Self Studies

Mathematics Test - 30

Result Self Studies

Mathematics Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What is the value of \(\lim _{{x} \rightarrow \infty} \frac{{x}^{3}+3 {x}^{2}+6 {x}+5}{{x}^{3}+2 {x}+6}\)?

    Solution

    Let,

    \({L}=\lim _{{x} \rightarrow \infty} \frac{{x}^{3}+3 {x}^{2}+6 {x}+5}{{x}^{3}+2 {x}+6}\) ....(1)

    Putting \(x=\infty\) in equation (1), we get:

    \(L=\frac{\pm \infty}{\pm \infty}\)

    Since, we know that:

    \(\frac{d}{dx}(x^n)= nx^{n-1}\) and differentiation of constant term is \(0.\)

    Differentiating numerator and denominator with respect to \(x\) in equation (1), we get:

    \({L}=\lim _{{x} \rightarrow \infty} \frac{3 {x}^{2}+6 {x}+6}{3 {x}^{2}+2}\) ....(2)

    Again putting \(x=\infty\) in equation (2), we get: 

    \(L=\frac{\pm \infty}{\pm \infty}\)

    Differentiating numerator and denominator with respect to \(x\) in equation (2), we get:

    \({L}=\lim _{{x} \rightarrow \infty} \frac{6 {x}+6}{6 {x}}\) ....(3)

    Again putting \(x=\infty\) in equation (3), we get 

    \(L=\frac{\pm \infty}{\pm \infty}\)

    Again differentiating numerator and denominator with respect to \(x\) in equation (3), we get:

    \({L}=\lim _{{x} \rightarrow \infty} \frac{6}{6}\)

    \(=\lim _{{x} \rightarrow \infty} 1\) ....(4)

    Applying limit \({x} \rightarrow \infty\) in equation (4), we get:

    \( {L}=1\)

  • Question 2
    1 / -0

    A discrete random variable \(x\) has the probability functions as:

    \begin{equation}
    \begin{array}{|c|c|c|c|c|c|c|c|c|c|}
    \hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
    \hline f ( x ) & k & 2 k & 3 k & 5 k & 5 k & 4 k & 3 k & 2 k & k \\
    \hline
    \end{array}
    \end{equation}
    The value of \(xf(x)\) is:
    Solution
    \(x\) \(f(x)\) \(xf(x)\)
    \(0\) \(k\) \(0\)
    \(1\) \(2k\) \(2k\)
    \(2\) \(3k\) \(6k\)
    \(3\) \(5k\) \(15k\)
    \(4\) \(5k\) \(20k\)
    \(5\) \(4k\) \(20k\)
    \(6\) \(3k\) \(18k\)
    \(7\) \(2k\) \(14k\)
    \(8\) \(k\) \(8k\)
    Total \(26 k\) \(103k\)
    We know that for random variable \(x\) sum of Probaboility \(=1\)
    \(\Rightarrow \sum P_{i}=1\)
    \(\Rightarrow k+2 k+3 k+5 k+5 k+4 k+3 k+2 k+k=1\)
    \(\Rightarrow 26 k=1\)
    \(\Rightarrow k=\frac{1}{26}\)
    \(\therefore xf(x)=103 k\)
    \(=103 \times \frac{1}{26}\)
    \(=\frac{103}{26}\)
    \(\therefore\) The value of \(xf(x)\) is \(\frac{103}{26}\).
     
  • Question 3
    1 / -0

    If \(y \frac{d y}{d x}=x\left[\frac{y^2}{x^2}+\frac{\phi\left(\frac{y^2}{x^2}\right)}{\phi^{\prime}\left(\frac{y^2}{x^2}\right)}\right], x>0, \phi>0\), and \(y(1)=-1\), then \(\phi\left(\frac{y^2}{4}\right)\) is equal to:

    Solution

    Given,

    \(\frac{d y}{d x}=x\left[\frac{y^2}{x^2}+\frac{\phi\left(\frac{y^2}{x^2}\right)}{\phi^{\prime}\left(\frac{y^2}{x^2}\right)}\right] \ldots \ldots(i)\)

    Let \(\mathrm{t}=\frac{\mathrm{y}}{\mathrm{x}}\)

    \(\Rightarrow \mathrm{y}=\mathrm{xt} \\\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{t}+\frac{\mathrm{dt}}{\mathrm{dx}}\)

    \(\therefore\) Eq. (i) becomes

    \( t\left(t+x \frac{d t}{d x}\right)=\left(t^2+\frac{\phi\left(t^2\right)}{\phi^{\prime}\left(t^2\right)}\right) \\\)

    \( \Rightarrow x t \frac{d t}{d x}=\frac{\phi\left(t^2\right)}{\phi^{\prime}\left(t^2\right)} \\\)

    \( \Rightarrow \frac{t \phi^{\prime}\left(t^2\right)}{\phi\left(t^2\right)} d t=\frac{d x}{x}\)

    Integrating both sides

    \(\int \frac{t \phi^{\prime}\left(t^2\right)}{\left.\phi t^2\right)} d t=\int \frac{d x}{x}\)

    Let \(\phi\left(t^2\right)=u\)

    \(\Rightarrow t \phi^{\prime}\left(t^2\right) d t=\frac{d u}{2} \\\)

    \(\therefore \frac{1}{2} \int \frac{d u}{u}=\int \frac{d x}{x} \\\)

    \(\Rightarrow \frac{1}{2} \ln u=\ln x+C \\\)

    \(\Rightarrow \frac{1}{2} \ln \phi\left(t^2\right)=\ln x+C \\\)

    \(\Rightarrow \frac{1}{2} \ln \left(\phi\left(\frac{y^2}{x^2}\right)\right)=\ln x+C\)

    If \(x=1, y=-1\), then \(C=\frac{1}{2} \ln (\phi(1))\)

    \(\therefore \frac{1}{2} \ln \left(\phi\left(\frac{\mathrm{y}^2}{\mathrm{x}^2}\right)\right)=\ln \mathrm{x}+2 \ln (\phi(1))\)

    If \(x=2\), then \(\ln \left(\phi\left(\frac{y^2}{4}\right)\right)=\ln 4+\ln [\phi(1)]\)

    \(\operatorname{Or} \phi\left(\frac{y^2}{4}\right)=4 \phi(1)\)

  • Question 4
    1 / -0

    If \(A=\left(\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right), B=\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right), \mathrm{i}=\sqrt{-1}\), and \(Q=A^T B A\), then the inverse of the matrix \(\mathrm{AQ}^{2021} \mathrm{~A}^{\mathrm{T}}\) is equal to:

    Solution

    \(\begin{aligned} & \mathrm{AA}^{\mathrm{T}}=\left|\begin{array}{cc}\frac{1}{5} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right|\left|\begin{array}{cc}\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right| \\ & \mathrm{AA}^{\mathrm{T}}\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1\end{aligned}\)

    \(\begin{aligned} & \text { Now, } Q^2=A^T B A A^T B A \\ & \Rightarrow Q^2=A^T B^2 A \\ & \text { Again, } Q^3=\left(A^T B A\right)\left(A^T B^2 A\right)=A^T B^3 A \\ & \text { Similarly, } \\ & Q^{2021}=A^T B^{2021} A \\ & A Q^{2021} A^T=A\left(A^T B^{2021} A\right) A^T \\ & =\left(A A^T\right) B^{2021}\left(A A^T\right)=B^{2021}\end{aligned}\)

    \(\begin{aligned} & B=\left|\begin{array}{ll}1 & 0 \\ i & 1\end{array}\right| \\ & B^2=\left|\begin{array}{cc}1 & 0 \\ 2 i & 1\end{array}\right| \text {, similarly } B^{2021}=\left|\begin{array}{cc}1 & 0 \\ 2021 i & 1\end{array}\right| \\ & \left(B^{2021}\right)^{-1}=\frac{\operatorname{adj}\left(B^{2021}\right)}{\left|B^{2021}\right|}=\left(\begin{array}{cc}1 & 0 \\ -2021 i & 1\end{array}\right)\end{aligned}\)

  • Question 5
    1 / -0

    The nth term of the following sequence 25, -125, 625, -3125, …….. is:

    Solution

    Given,

    25, -125, 625, -3125, …….

    Here,

    First term, a = 25

    Common ratio, r =\(\frac{-125}{25}\) = -5

    As we know that, if a1, a2, …., an is a GP then the general term is given by:

    an = a × rn - 1

    Where a is the first term and r is the common ratio.

    The general term is:

    \(a_{n}=25 \times(-5)^{n-1}\)

    \(=(-1)^{n-1} 5^{n+1}\)

  • Question 6
    1 / -0

    What is the area of the region bounded by the curve \(f(x)=1-\frac{x^2}{4}, x \in[-2,2]\) and the \(x\)-axis?

    Solution
    The area of the region bounded by the curve \(f(x), x \in[-a, a]\) and the \(\mathrm{x}\)-axis is given by: \(A=\int_{-a}^a f(x) d x\)
    Therefore, the area of the region bounded by the curve \(f(x)=1-\frac{x^2}{4}, x \in[-2,2]\) and the \(x\)-axis will be:
    \(A=\int_{-2}^2\left(1-\frac{x^2}{4}\right) d x \Rightarrow A=\left[x-\frac{x^3}{12}\right]_{-2}^2\)
    \(\Rightarrow A=[2-(-2)]-\left[\frac{8}{12}-\frac{-8}{12}\right]\)
    \(\Rightarrow A=4-\frac{4}{3}\Rightarrow A=\frac{8}{3}\)
    Therefore, the area of the region bounded by the curve \(f(x)=1-\frac{x^2}{4}, x \in[-2,2]\) and the \(x\)-axis is \(\frac{8}{3}\) square units.
  • Question 7
    1 / -0

    Find the domain of the inverse trigonometric function \(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\) is:

    Solution

    Given,

    \(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\)

    The domain of inverse sin function , \(\sin x\) is \(\in [-1,1]\)

    Domain of the function is calculated as follows:

    \(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\)

    \(-1 \leq 2 x \sqrt{1-x^{2}} \leq 1\)

    \(-\frac{1}{2} \leq x \sqrt{1-x^{2}} \leq \frac{1}{2}\)

    \(x^{2}\left(1-x^{2}\right) \leq \frac{1}{4}\)

    Let, \(x^{2} =t\)

    \(t\left(1-t\right) \leq \frac{1}{4}\)

    \(t-t^{2}-\frac{1}{4} \leq 0\)

    \(\left(t-\frac{1}{2}\right)^{2} \leq 0\)

    \(t \leq \frac{1}{2}\)

    \(x^{2} \leq \frac{1}{{2}}\)

    \(x\leq \frac{1}{\sqrt{2}}\)

    \(x \in\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]\)

  • Question 8
    1 / -0

    If \(p\) and \(q\) are the lengths of the perpendiculars from the origin on the lines,

    \(\mathrm{xcosec} \alpha-\mathrm{y} \sec \alpha=\mathrm{k} \cot 2 \alpha\) and \(\mathrm{x} \sin \alpha+\mathrm{y} \cos \alpha=\mathrm{k} \sin 2 \alpha\) respectively, then \(\mathrm{k}^2\) is equal to:

    Solution

    \(\begin{aligned} & p=\frac{k \cot 2 \alpha}{\sqrt{\operatorname{cosec}^2 \alpha+\sec ^2 \alpha}} \\ & \Rightarrow q=\frac{k \sin 2 \alpha}{\sqrt{\sin ^2 \alpha+\cos ^2 \alpha}} \\ & \Rightarrow p=\frac{k\left(\frac{\cos 2 \alpha}{\sin 2 \alpha}\right)}{\sqrt{\frac{\sin ^2 \alpha+\cos ^2 \alpha}{\sin ^2 \alpha \cos ^2 \alpha}}}=\frac{k \cos 2 \alpha}{\sin 2 \alpha} \\ & \Rightarrow p=\left(\frac{k}{2}\right) \cos 2 \alpha \\ & \Rightarrow q=k \sin 2 \alpha \\ & \Rightarrow \cos 2 \alpha=(2 p / k) \\ & \Rightarrow \sin 2 \alpha=(q / k) \\ & \Rightarrow \sin 2 \alpha+\cos ^2 2 \alpha=1 \\ & \Rightarrow \frac{4 p^2}{k^2}+\frac{q^2}{k^2}=1 \\ & \Rightarrow 4 p^2+q^2=k^2\end{aligned}\)

  • Question 9
    1 / -0

    Find the area bounded by the curve between \(y=\sin x+\cos x\) in the interval \(0<\mathrm{x}<\frac{\pi}{2}\).

    Solution

    Given: 

    \(y=\sin x+\cos x\) in the interval \(0

    Let the required area be \(\mathrm{A}\).

    Using the formula of the area under the curve as:

    \(\mathrm{A}=\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \mathrm{dx}\right|\)

    \(=\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right|+\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{g}(\mathrm{x}) \mathrm{d} \mathrm{x}\right|\)

    \(\Rightarrow \mathrm{A}=\left|\int_{0}^{\frac{\pi}{2}}(\sin \mathrm{x}+\cos \mathrm{x}) \mathrm{d} \mathrm{x}\right|\)

    \(=\left|\int_{0}^{\frac{\pi}{2}}(\sin \mathrm{x}) \mathrm{dx}\right|+\left|\int_{0}^{\frac{\pi}{2}}(\cos \mathrm{x}) \mathrm{dx}\right|\)

    \(=\left|[-\cos \mathrm{x}]_{0}^{\frac{\pi}{2}}\right|+\left|[\sin \mathrm{x}]_{0}^{\frac{\pi}{2}}\right|\)

    Using the value of \(\cos 0=1, \sin 0=0, \cos \frac{\pi}{2}=0\) and \(\sin \frac{\pi}{2}=1\)

    \(\Rightarrow \mathrm{A}=\left|-\cos \frac{\pi}{2}+\cos 0\right|+\left|\sin \frac{\pi}{2}+\sin 0\right|\)

    \(=|0+1|+|1-0|\)

    \(=1+1\)

    \(=2\)

  • Question 10
    1 / -0

    A balloon, which always remains spherical, has a variable diameter \(\frac{3}{2}(4 x +3)\). Find the rate of change of its volume with respect to \(x\).

    Solution

    Given diameter of spherical balloon \(D=\frac{3}{2}(4 x+3)\)

    Radius \(R =\frac{ D }{2}=\frac{3}{4}(4 x +3)\)

    Rate of change of radius \(R\) wrt \(x =\frac{ dR }{ dx }=\frac{ d }{ dx }\left[\frac{3}{4}(4 x +3)\right]\)

    \( \frac{ dR }{ dx }=\frac{3}{4} \times \frac{ d }{ dx }(4 x +3) \)

    \( \frac{ dR }{ dx }=\frac{3}{4} \times 4=3\)

    Volume of the spherical balloon \(V=\frac{4 \pi}{3} \times R^3\)

    Rate of change of radius \(V\) wrt \(x=\frac{d V}{d x}=\frac{d V}{d R} \times \frac{d R}{d x}\)

    \(\frac{ dV }{ dx }=\frac{ d }{ dR }\left[\frac{4 \pi}{3} \times R ^3\right] \times \frac{ dR }{ dx } \)

    \( \frac{ dV }{ dx }=\frac{4 \pi}{3} \times 3 R ^2 \times 3=12 \pi R ^2\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now