Given,
\(\frac{d y}{d x}=x\left[\frac{y^2}{x^2}+\frac{\phi\left(\frac{y^2}{x^2}\right)}{\phi^{\prime}\left(\frac{y^2}{x^2}\right)}\right] \ldots \ldots(i)\)
Let \(\mathrm{t}=\frac{\mathrm{y}}{\mathrm{x}}\)
\(\Rightarrow \mathrm{y}=\mathrm{xt} \\\)
\(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{t}+\frac{\mathrm{dt}}{\mathrm{dx}}\)
\(\therefore\) Eq. (i) becomes
\( t\left(t+x \frac{d t}{d x}\right)=\left(t^2+\frac{\phi\left(t^2\right)}{\phi^{\prime}\left(t^2\right)}\right) \\\)
\( \Rightarrow x t \frac{d t}{d x}=\frac{\phi\left(t^2\right)}{\phi^{\prime}\left(t^2\right)} \\\)
\( \Rightarrow \frac{t \phi^{\prime}\left(t^2\right)}{\phi\left(t^2\right)} d t=\frac{d x}{x}\)
Integrating both sides
\(\int \frac{t \phi^{\prime}\left(t^2\right)}{\left.\phi t^2\right)} d t=\int \frac{d x}{x}\)
Let \(\phi\left(t^2\right)=u\)
\(\Rightarrow t \phi^{\prime}\left(t^2\right) d t=\frac{d u}{2} \\\)
\(\therefore \frac{1}{2} \int \frac{d u}{u}=\int \frac{d x}{x} \\\)
\(\Rightarrow \frac{1}{2} \ln u=\ln x+C \\\)
\(\Rightarrow \frac{1}{2} \ln \phi\left(t^2\right)=\ln x+C \\\)
\(\Rightarrow \frac{1}{2} \ln \left(\phi\left(\frac{y^2}{x^2}\right)\right)=\ln x+C\)
If \(x=1, y=-1\), then \(C=\frac{1}{2} \ln (\phi(1))\)
\(\therefore \frac{1}{2} \ln \left(\phi\left(\frac{\mathrm{y}^2}{\mathrm{x}^2}\right)\right)=\ln \mathrm{x}+2 \ln (\phi(1))\)
If \(x=2\), then \(\ln \left(\phi\left(\frac{y^2}{4}\right)\right)=\ln 4+\ln [\phi(1)]\)
\(\operatorname{Or} \phi\left(\frac{y^2}{4}\right)=4 \phi(1)\)