Self Studies

Mathematics Test - 31

Result Self Studies

Mathematics Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the sum of the series whose nth term is n (n + 2).

    Solution

    Given,

    \(a_{n}=n \cdot(n+2)\)

    As we know that,

    \(S_{n}=\sum a_{n}\)

    \(\Rightarrow S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}[k \cdot(k+2)]\)

    \(\Rightarrow S_{n}=2 \sum_{k=1}^{n} k+\sum_{k=1}^{n} k^{2}\)

    As we know

    The sum of first n natural numbers,

    S=\(\frac{n(n+1)}2\)

    The sum of first n2 natural numbers,

    S=\(\frac{n(n+1)(2n+1)}6\)

    Then, we can write

    \(\Rightarrow S_{n}=\frac{2n(n+1)}2 + \frac{n(n+1)(2n +1)}2\)

    \(\Rightarrow S_{n}=\frac{n \cdot(n+1) \cdot(2 n+7)}{6}\)

  • Question 2
    1 / -0

    Probability of Ankit passing in Maths, English and Science is \(\frac{5}{8}, \frac{7}{9}\) and \(\frac{3}{5}\) respectively. Find the probability of him failing in atleast two subjects.

    Solution

    Probability of two or more incidents happening when they are not related to each other \(=P_{1} \times P_{2} \times P_{3}\)

    We know that:

    \(P^{\prime}=1-P\)

    \(P^{\prime}\) is the probability of a thing not happening and \(P\) is of that happening.

    Probability of Ankit failing in atleast two subject = Probability of him failing in \(2\) subject + Probability of him failing in \(3\) subjects.

    Probability of failing in Maths \(=1-\frac{5}{8}=\frac{3}{8}\)

    Probability of failing in English \(=1-\frac{7}{9}=\frac{2}{9}\)

    Probability of failing in Science \(=1-\frac{3}{5}=\frac{2}{5}\)

    Probability of him failing in \(2\) subject

    \(=\frac{3}{8} \times \frac{2}{9} \times \frac{3}{5}+\frac{5}{8} \times \frac{2}{9} \times \frac{2}{5}+\frac{3}{8} \times \frac{7}{9} \times \frac{2}{5}\)

    \(=\frac{(18+20+42)}{360}\)

    \(=\frac{80}{360}\)

    Probability of him failing in three subjects \(=\frac{3}{8} \times \frac{2}{5} \times \frac{2}{9}=\frac{12}{360}\)

    Required probability \(=\frac{80}{360}+\frac{12}{360}\) \(=\frac{92}{360}\)

  • Question 3
    1 / -0

    In a frequency distribution, if the mean and median are 10 and 9 respectively, then its mode is approximately:

    Solution

    Given:

    Ina frequency distribution, the mean and median are 10 and 9 respectively

    Relationship between Mean, Median and mode:

    As we know that,Mode = 3 Median – 2 Mean

    Mode = (3× 9) - (2× 10) = 7

  • Question 4
    1 / -0

    If \(n=100 !\), then what is the value of the following?

    \(\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots \ldots+\frac{1}{\log _{100} n}\)

    Solution

    Given:

    \(\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots . .+\frac{1}{\log _{100} n}\)

    \(=\log _{n} 2+\log _{n} 3+\log _{n} 4+\ldots . .+\log _{n} 100\)

    \(=\log _{n}[2 \times 3 \times 4 \times \ldots \times 100]\)

    \(=\log _{n} 100 !\)

    \(=\log _{100 !} 100 !\)

    \(=1\)

  • Question 5
    1 / -0

    \(\text { If } a, b, c \text { are distinct + ve real numbers and } a^2+b^2+c^2=1 \text { then } a b+b c+c a \text { is }\)

    Solution

    \(\begin{aligned} & \because(a-b)^2+(b-c)^2+(c-a)^2>0 \\ & \Rightarrow 2\left(a^2+b^2+c^2-a b-b c-c a\right)>0 \\ & {\left[\because a^2+b^2+c^2=1\right]} \\ & \Rightarrow 2>2(a b+b c+c a) \Rightarrow a b+b c+c a<1\end{aligned}\)

  • Question 6
    1 / -0

    The point whose abscissa is equal to its ordinate and which is equidistant from \(\mathrm{A}(-1,0)\) and \(\mathrm{B}(0,5)\) is:

    Solution

    Given,

    Points are \(\mathrm{A}(-1,0)\) and \(\mathrm{B}(0,5)\).

    The distance between tow points \(\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) and \(\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\) is given by:

    \(\mathrm{AB}=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}\)

    Let the point which is equidistant from the points \(\mathrm{A}\) and \(\mathrm{B}\) be \(\mathrm{C}(\mathrm{x},\mathrm{x})\).

    As the point is equidistant we have \(\mathrm{A}\mathrm{C}=\mathrm{B}\mathrm{C}\).

    Therefore, equating the right hand and left hand side using distance formula.

    \(\mathrm{AC} =\mathrm{BC} \)

    \(\sqrt{(-1-\mathrm{x})^{2}+(0-\mathrm{x})^{2}}=\sqrt{(0-\mathrm{x})^{2}+(5-\mathrm{x})^{2}}\)

    \(\Rightarrow (-1-\mathrm{x})^{2}+(0-\mathrm{x})^{2} =(0-\mathrm{x})^{2}+(5-\mathrm{x})^{2}\)

    \(\Rightarrow1+2 \mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{2} =\mathrm{x}^{2}+25-10 \mathrm{x}+\mathrm{x}^{2} \)

    \(\Rightarrow1+2 \mathrm{x} =25-10 \mathrm{x}\)

    \(\Rightarrow12 \mathrm{x} =24 \)

    \(\Rightarrow\mathrm{x} =2\)

    Thus, the point which is equidistant from both points is \((2,2)\).

  • Question 7
    1 / -0

    If \(f(x)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x-1, x \in R\), then the equation \(f(x)=0\) has :

    Solution

    \(f(x)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x-1 \\\)

    \( \text { Putf }(x)=0 \\\)

    \( \Rightarrow 0=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x-1 \\\)

    \( \Rightarrow\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1 \\\)

    \( \Rightarrow 3^x+4^x=5^x \ldots \text { (i) }\)

    For \(\mathrm{x}=1\)

    \(3^1+4^1>5^1\)

    For \(\mathrm{x}=3$\)

    \(3^3+4^3=91<5^3\)

    Only for \(\mathrm{x}=2\), equation (i) Satisfy

    So, only one solution \((x=2)\)

  • Question 8
    1 / -0

    Let \(g(x)=\int_0^x f(t) d t\), where \(f\) is continuous function in \([0,3]\) such that \(\frac{1}{3} \leq \mathrm{f}(\mathrm{t}) \leq 1\) for all \(\mathrm{t} \in[0,1]\) and \(0 \leq \mathrm{f}(\mathrm{t}) \leq \frac{1}{2}\) for all \(\mathrm{t} \in(1,3]\). The largest possible interval in which \(\mathrm{g}(3)\) lies is:

    Solution

  • Question 9
    1 / -0

    Let \(P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\) and \(Q=P_{A P}{ }^T\). If \(\mathrm{P}^{\mathrm{T}} \mathrm{Q}^{2007} \mathrm{P}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]\), then \(2 \mathrm{a}+\mathrm{b}-3 \mathrm{c}-4 \mathrm{~d}\) equal to:

    Solution

    \(\begin{aligned} & \mathrm{Q}=\mathrm{PAP}^{\mathrm{T}} \\ & \mathrm{P}^{\mathrm{T}} \cdot \mathrm{Q}^{2007} \cdot \mathrm{P}=\mathrm{P}^{\mathrm{T}} \cdot \mathrm{Q} \cdot \mathrm{Q} \ldots \mathrm{Q} \cdot \mathrm{P} \\ & =\mathrm{P}^{\mathrm{T}}\left(\mathrm{PAP} \mathrm{P}^{\mathrm{T}}\right)\left(\mathrm{P} \cdot \mathrm{AP} \mathrm{P}^{\mathrm{T}} \ldots\left(\mathrm{P}^{\mathrm{T}}\right) \mathrm{P} .\right. \\ & \Rightarrow\left(\mathrm{P}^{\mathrm{T}} \mathrm{P}\right) \mathrm{A}\left(\mathrm{P}^{\mathrm{T}} \mathrm{P}\right) \mathrm{A} \ldots \mathrm{A}\left(\mathrm{P}^{\mathrm{T}} \mathrm{P}\right) \\ & \mathrm{P}^{\mathrm{T}} \cdot \mathrm{P}=\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]\left[\begin{array}{cc}-\sqrt{3} / 2 & 1 / 2 \\ -1 / 2 & \sqrt{3} / 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathrm{I} \\ & \therefore \mathrm{P}^{\mathrm{T}} \cdot \mathrm{Q}^{2007} \cdot \mathrm{P}=\mathrm{A}^{2007} \\ & \mathrm{~A}^2=\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right] \\ & \therefore A^{2007}=\left[\begin{array}{cc}1 & 2007 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right] \\ & \mathrm{a}=1, \mathrm{~b}=2007, \mathrm{c}=0, \mathrm{~d}=1 \\ & 2 \mathrm{a}+\mathrm{b}-3 \mathrm{c}-4 \mathrm{~d}=2+2007-4=2005\end{aligned}\)

  • Question 10
    1 / -0

    The relation \(\mathrm{R}\) on the set of integer is given by \(\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):\) \(a- b\) is divisible by 7, where \(a, b \in Z\}\), then \(\mathrm{R}\) is a/an:

    Solution

    Given that:

    \(R\) is a relation on \(Z\) and is defined as:

    \(R=\{(a, b): a-b\) is divisible by 7 where \(a, b \in Z\}\)

    We know that:

    A relation R on a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

    Therefore,

    \(R\) is reflexive as:

    \(a - a=0\) is divisible by 7 for all \(a \in Z\).

    Suppose, if \((a, b) \in R\)

    \( \Rightarrow 7\) divides \(a-b\) i.e.,

    \(\Rightarrow a-b=7 m\), where \(m\in Z \)

    \(\Rightarrow b-a=7 n\), where \(n=-m\)

    \(\Rightarrow 7\) divides \(b-a\) too, which implies that:

    \((b, a) \in R .\)

    Therefore, \(R\) is symmetric.

    Suppose, if \((a, b) \in R\) and \((b, c) \in R\), then:

    \(a-b\) and \(b-c\) are divisible by 7.

    \(\Rightarrow a-b=7 m\) and \(b-c=7 n\), where \(m, n \in Z\)

    \(\Rightarrow a-c=7 q\), where \(q=m+n\)

    \(\Rightarrow(a, c) \in R\)

    Therefore, \(R\) is transitive.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now