Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    1 / -0

    Solve: 1 ≤ |x – 1| ≤ 3

  • Question 2
    1 / -0

    If the determinant \(\left|\begin{array}{lll}{a}_{1} & {~b}_{1} & {c}_{1} \\ {a}_{2} & {~b}_{2} & {c}_{2} \\ {a}_{3} & {~b}_{3} & {c}_{3}\end{array}\right|=\Delta\), then \(\left|\begin{array}{lll}{x} {a}_{1} & {yb}_{1} & {zc}_{1} \\ {xa}_{2} & {yb}_{2} & {zc}_{2} \\ {xa}_{3} & {yb}_{3} & {zc}_{3}\end{array}\right|=?({x}, {y}, {z} \neq 0\) or \(1\) )

  • Question 3
    1 / -0

    Find the sum of the series whose nth term is \((2 n-1)^{2}\).

  • Question 4
    1 / -0

    Consider the following statements:

    1. \(A=\{1,3,5\}\) and \(B=\{2,4,7\}\) are equivalent sets.

    2. \(A=\{1,5,9\}\) and \(B=\{1,5,5,9,9\}\) are equal sets.

    Which of the above statements is/are correct?

  • Question 5
    1 / -0

    Let \(y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1

  • Question 6
    1 / -0

    \(\text { The value of } \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{1+\sin ^2 x}{1+\pi^{\sin x}}\right) d x \text { is }\)

  • Question 7
    1 / -0

    Using principle of mathematical induction, prove that for all \((2 \mathrm{n}+7)<(\mathrm{n}+3)^{2}\).

  • Question 8
    1 / -0

    Evaluate the integral\(\int_{1}^{4} \frac{x}{x^{2}+1} d x\).

  • Question 9
    1 / -0

    The expression \(\frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}\) is equal to:

  • Question 10
    1 / -0

    If \(\int_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=a+b \sqrt{2}+c \sqrt{3}\), where \(a, b, c\) are rational numbers, then \(2 a+3 b-4 c\) is equal to :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now