Self Studies

Mathematics Test - 33

Result Self Studies

Mathematics Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 3 x & 6\end{array}\right|\), then \(x\) is equal to:

    Solution

    Given,

    \(\left|\begin{array}{ll}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 3 x & 6\end{array}\right|\)

    \(\Rightarrow x^{2}-36=36-6 x\)

    \(\Rightarrow x^{2}+6 x-72=0\)

    \(x=\frac{-6 \pm \sqrt{6^{2}+4 \times 72}}{2}\)

    \(x=\frac{-6 \pm \sqrt{36(1+8)}}{2}\)

    \(x=-3 \pm 9\)

    \(x=6\) or \(-12\)

  • Question 2
    1 / -0

    If \(x d y=y d x+y^2 d y, y>0\) and \(y(1)=1\), then what is \(y(-3)\) equal to:

    Solution

    \(\Rightarrow x d y=y d x+y^2 d y \)

    \(\Rightarrow x d y-y d x=y^2 d y \)

    \(\Rightarrow \frac{x d y-y d x}{y^2}=d y \)

    \(\because d\left(\frac{x}{y}\right)=\frac{y d x-x d y}{y^2}=\frac{x d y-y d x}{y^2}=-d\left(\frac{x}{y}\right) \)

    \(\Rightarrow-d\left(\frac{x}{y}\right)=d(y)\)

    Integrate both side

    \(\Rightarrow \quad-\frac{x}{y}=y+c \Rightarrow\) General solution

    Given that \(y(1)=1\)

    So by putting \(x =1\) and \(y =1\)

    \(\Rightarrow-1 / 1=1+c \)

    \(\Rightarrow c=-2 \)

    \(\Rightarrow-\frac{x}{y}=y-2 \)

    \(\Rightarrow y^2-2 y+x=0 \Rightarrow\) particular solution

    Now the value of \(y(-3)\) put \(x=-3\)

    \(\Rightarrow y ^2-2 y -3=0\)

    Solve the quadratic equation

    \(\Rightarrow y^2-3 y+y-3=0 \)

    \(\Rightarrow y(y-3)+1(y-3)=0\)

    \(\Rightarrow( y -3)( y +1)=0\)

    So two values of \(y\) we will get \(y=3, y=-1\)

    But in our question given that \(y>0\) so the answer is \(y=3\)

  • Question 3
    1 / -0
    The differential equation of all parabolas whose axis is \(y\)-axis is:
    Solution

    We know that, Standard formula of \(y-\)axis parabola is:

    \(x^{2}=4ay\)

    Let, Vertex of parabola be \((0,k)\)

    Then,  \((x-0)^{2}=4 a(y-k)\)

    \(\Rightarrow x^{2}=4 a y-4 a k\)

    Taking derivative on both side,

    We get, \(\frac{d}{d x}\left(x^{2}\right)=\frac{d}{d x}(4 a y-4 a k)\)

    \(\Rightarrow 2 x=4 a \frac{d y}{d x}\)

    \(\Rightarrow \frac{1}{x} \frac{d y}{d x}=\frac{1}{2 a}\)

    Again taking derivative on both side,

    We get, \(\frac{d}{dx}\left(\frac{1}{x} \frac{dy}{dx}\right)=\frac{{d}}{dx}\left(\frac{1}{2 z}\right)\)

    \(\Rightarrow \frac{1}{x} \frac{{d}^{2}y}{dx^{2}}+\frac{dy}{dx}\left(\frac{-1}{x^{2}}\right)=0\)

    \(\Rightarrow x \times \frac{d^{2} y}{dx^{2}}-\frac{dy}{dx}=0\)

  • Question 4
    1 / -0

    Find the area under the curve \(y=\cos x\) in the interval \(0

    Solution

    Let us first draw the graph of \(y=\cos x\) in the interval \(0

    Let the required area of the positive enclosed region be A.

    Using the formula of the area under the curve as, 

    \(\mathrm{A}=\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \mathrm{d} \mathrm{x}\right|\),

    \(\Rightarrow \mathrm{A}=\left|\int_{0}^{\frac{\pi}{2}} \operatorname{cosxd} \mathrm{x}\right|\)

    \(=\left|[\sin \mathrm{x}]_{0}^{\frac{\pi}{2}}\right|\)

    Using the value of \(\sin 0=0\) and \(\sin \frac{\pi}{2}=1\)

    \(\Rightarrow \mathrm{A}=\left|\sin \frac{\pi}{2}-\sin 0\right|\)

    \(=\left|1-0\right|\) \(=1\)

  • Question 5
    1 / -0

    The solution of the inequality \(\frac{3(x-2)}5 \geq \frac{5(2-x)}3\) is:

    Solution

    Given,

    \(\frac{3(x-2)}5 \geq \frac{5(2-x)}3\)

    ⇒ 3(x – 2) × 3 ≥ 5(2 – x) × 5

    ⇒ 9(x – 2) ≥ 25(2 – x)

    ⇒ 9x – 18 ≥ 50 – 25x

    ⇒ 9x – 18 + 25x ≥ 50

    ⇒ 34x – 18 ≥ 50

    ⇒ 34x ≥ 50 + 18

    ⇒ 34x ≥ 68

    \(\Rightarrow x \geq \frac{68}{34}\)

    ⇒ x ≥ 2

    ⇒ x ∈ [2, ∞)

  • Question 6
    1 / -0

    A company produces two types of goods, \(A\) and \(B\), that require gold and silver. Each unit of type \(A\) requires \(3 \mathrm{gm}\) of silver and \(1 \mathrm{gm}\) of gold while that of type \(B\) requires \(1 \mathrm{gm}\) of silver and \(2 \mathrm{gm}\) of gold. The company can produce \(9 \mathrm{gm}\) of silver and \(8 \mathrm{gm}\) of gold. If each unit of type \(A\) brings a profit of Rs 40 and that of type \(B\) Rs 50. What is the maximum profit?

    Solution

    Let \(x\) is the amount of goods A and \(y\) is the amount of goods B.

    Objective function:

    Maximum profit, \(Z=40x+50y\)

    Subject to constraints:

       Silver (in g)  Gold (in g)
     Type A  3  1
     Type B  1  2
      \(\le\)9 \(\le\)8
    Then we can write constraints as:

    \(3x+y \le 9\)

    \(x+2y \le 8\)

    \(x,y \ge 0\)

    First we will convert inequations into equations as follows :
    \(3 x+y=9, x+2 y=8, x=0\) and \(y=0\)
    Region represented by \(3 x+y \leq 9\) :
    The line \(3 x+y=9\) meets the coordinate axes at \(A_{1}(3,0)\) and \(B_{1}(0,9)\) respectively. By joining these points we obtain the line
    \(3 x+y=9\). Clearly \((0,0)\) satisfies the \(3 x+y=9\). So,the region which contains the origin represents the solution set of the inequation \(3 x+y \leq\) \(9 .\)
    Region represented by \(x \geq 0\) and \(y \geq 0\) :
    The line \(x+2 y=8\) meets the coordinate axes at \(C_{1}(8,0)\) and \(D_{1}(0,4)\) respectively. By joining these points we obtain the line \(x+2 y=8\). Clearly \((0,0)\) satisfies the inequation \(x+2 y \leq 8\). So, the region which contains the origin represents the solution set of the inequation \(x+2 y \leq\) \(8 .\)
    Region represented by \(x \geq 0\) and \(y \geq 0\) :
    Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations \(x \geq 0\), and \(y \geq\) 0 .
    The feasible region determined by the system of constraints \(3 x+y \leq\) \(9, x+2 y \leq 8, x \geq 0\), and \(y \geq 0\) are as follows.
     
    The corner points are \(\mathrm{O}(0,0), \mathrm{D}(0,4), \mathrm{E}(2,3), \mathrm{A}(3,0)\)
    The values of \(Z\) at these corner points are as follows:
     
    Corner Points

    \(Z = 40 x + 50 y \)

    0
    D 200
    E 230
    A 120
    The maximum value of \(Z\) is 230 which is attained at \(E(2,3)\).
  • Question 7
    1 / -0

    Find the equation of the line perpendicular to the line \(x-3 y+5=0\) and passes through the point \((2,-4)\).

    Solution

    Given,

    Line \(x-3 y+5=0\)

    The general equation of a line is \(y=m x+c\)

    Where \(m\) is the slope and \(c\) is any constant

    • The slope of parallel lines is equal.
    • The slope of the perpendicular line have their product \(=-1\)

    \(\Rightarrow y=\frac{1}{3} x+\frac{5}{3}\)

    \(\Rightarrow \text { Slope }(m_{1})=\frac{1}{3} \text { and } c_{1}=\frac{5}{3}\)

    Now for the slope of the perpendicular line \(m_2\)

    \(m_{1} \times m_{2}=-1\)

    \(\Rightarrow \frac{1}{3} \times m_{2}=-1\)

    \(\Rightarrow m_{2}=-3\)

    Perpendicular line has the slope \(-3\) and passes through \((2,-4)\)

    \(\therefore\) Equation of the perpendicular line is

    \(\left(y-y_{1}\right)=m\left(x-x_{1}\right) \)

    \(\Rightarrow y-(-4)=-3(x-2)\)

    \(\Rightarrow y+3 x-2=0\)

  • Question 8
    1 / -0

    Find\(\cot ^{-1} \frac{1}{3}-2 \tan ^{-1} \frac{2}{3}\).

    Solution

    Given,

    \(\cot ^{-1} \frac{1}{3}-2 \tan ^{-1} \frac{2}{3}\)

    \(=\left[\frac{\pi}{2}-\tan ^{-1} \frac{1}{3}\right]-\tan ^{-1} \frac{(\frac{2}{3}+\frac{2}{3})}{(1-\frac{2}{3} \times \frac{2}{3})}\)\(\quad\quad(\because \cot ^{-1} x= \frac{\pi}{2}-\tan ^{-1} x, 2\tan ^{-1} x =\tan ^{-1} (\frac{2x}{1 -x^2}))\)

    \(=\frac{\pi}{2}-\left[\tan ^{-1} \frac{12}{5}+\tan ^{-1} \frac{1}{3}\right]\)

    \(=\frac{\pi}{2}-\left[\tan ^{-1} \frac{\frac{12}{3}+\frac{1}{1}}{1-\frac{12}{5} \times \frac{1}{3}}\right]\)\(\quad\quad(\because \tan ^{-1} x+\tan ^{-1} y =\tan ^{-1} \frac{x+y}{1 -xy} )\)

    \(=\frac{\pi}{2}-\left[\tan ^{-1} \frac{41}{3}\right]\)

    \(=\cot ^{-1} \frac{41}{3}\)

  • Question 9
    1 / -0

    If \(A=\left(\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right), B=\left(\begin{array}{cc}1 & 0 \\ i & 1\end{array}\right), \mathrm{i}=\sqrt{-1}\), and \(Q=A^T B A\), then the inverse of the matrix \(\mathrm{AQ}^{2021} \mathrm{~A}^{\mathrm{T}}\) is equal to:

    Solution

    \(A^{\mathrm{T}}=\left|\begin{array}{cc}\frac{1}{5} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right|\left|\begin{array}{cc}\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right|\)

    \(\mathrm{AA}^{\mathrm{T}}\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1\)

    \(\begin{aligned} & \text { Now, } Q^2=A^T B A A^T B A \\ & \Rightarrow Q^2=A^T B^2 A \\ & \text { Again, } Q^3=\left(A^T B A\right)\left(A^T B^2 A\right)=A^T B^3 A \\ & \text { Similarly, } \\ & Q^{2021}=A^T B^{2021} A \\ & A Q^{2021} A^T=A\left(A^T B^{2021} A\right) A^T \\ & =\left(A A^T\right) B^{2021}\left(A A^T\right)=B^{2021}\end{aligned}\)

    \(\begin{aligned} & \mathrm{B}=\left|\begin{array}{ll}1 & 0 \\ \mathrm{i} & 1\end{array}\right| \\ & \mathrm{B}^2=\left|\begin{array}{cc}1 & 0 \\ 2 \mathrm{i} & 1\end{array}\right| \text {, similarly } \mathrm{B}^{2021}=\left|\begin{array}{cc}1 & 0 \\ 2021 \mathrm{i} & 1\end{array}\right| \\ & \left(\mathrm{B}^{2021}\right)^{-1}=\frac{\operatorname{adj}\left(\mathrm{B}^{2021}\right)}{\left|\mathrm{B}^{2021}\right|}=\left(\begin{array}{cc}1 & 0 \\ -2021 \mathrm{i} & 1\end{array}\right)\end{aligned}\)

  • Question 10
    1 / -0

    Using principle of mathematical induction, prove that for all \(n \in N, n(n+\) 1) \((n+5)\) is:

    Solution

    Given:

    \(P(n): n(n+1)(n+5)=3 x, x \in N\)

    For \(n=1,1 \times(1+1)(1+5)=12\), which is a multiple of \(3 .\)

    \(\mathrm{So}, \mathrm{P}(1)\) is true.

    Let \(P(n)\) be true for some \(n=k\).

    \(k(k+1)(k+5)=3 x\), Where \(x \in N\).....(1)

    Let \(P(k+1)\) be true for some \(n=k+1\).

    \((k+1)(k+2)(k+6)=3 x, x \in N\).....(2)

    From (1) and (2).

    Now, \((k+1)(k+2)(k+6)-k(k+1)(k+5)\)

    \(=(k+1)[(k+2)(k+6)-k(k+5)] \)

    \(=(k+1)\left[k^{2}+8 k+12-k^{2}-5 k\right] \)

    \(=(k+1)(3 k+12)\) \(=3 x\), where \(x \in N\)

    Thus, \((k+1)(k+2)(k+6)\)

    \(=k(k+1)(k+5)+3 x\)

    \(=3 \mathrm{~m}+3 {x}\), which is multiple of \(3 .\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now