Self Studies

Mathematics Test - 34

Result Self Studies

Mathematics Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let \(R\) be a relation defined as \(x R y\) if and only if \(2 x+3 y=20\), where \(x, y \in N\). How many elements of the form \((x, y)\) are there in \(R\) ?

    Solution

    Given:

    \(2 x+3 y=20\)

    \(y=\frac{20-2x}{3}\)

    Let the value of \(x\) be \(1\)

    \(y=\frac{20-2\times(1)}{3}\)

    \(y=\frac{20-2}{3}\)

    \(y=\frac{18}{3}\)

    \(y=6\)

    \((x, y)=(1, 6)\)

    Let the value of \(x\) be \(2\)

    \(y=\frac{20-2\times(2)}{3}\)

    \(y=\frac{20-4}{3}\)

    \(y=\frac{16}{3}\)

    Let the value of \(x\) be \(3\)

    \(y=\frac{20-2\times(3)}{3}\)

    \(y=\frac{20-6}{3}\)

    \(y=\frac{14}{3}\)

    Let the value of \(x\) be \(4\)

    \(y=\frac{20-2\times(4)}{3}\)

    \(y=\frac{20-8}{3}\)

    \(y=\frac{12}{3}\)

    \(y=4\)

    \((x, y)=(4, 4)\)

    Let the value of \(x\) be \(5\)

    \(y=\frac{20-2\times(5)}{3}\)

    \(y=\frac{20-10}{3}\)

    \(y=\frac{10}{3}\)

    Let the value of \(x\) be \(6\)

    \(y=\frac{20-2\times(6)}{3}\)

    \(y=\frac{20-12}{3}\)

    \(y=\frac{8}{3}\)

    Let the value of \(x\) be \(7\)

    \(y=\frac{20-2\times(7)}{3}\)

    \(y=\frac{20-14}{3}\)

    \(y=\frac{6}{3}\)

    \(y=2\)

    \((x, y)=(7, 2)\)

    \(R=\{(1,6),(4,4),(7,2)\}\)

    There are \(3\) elements in the form \((x, y)\) are there in \(R\).

  • Question 2
    1 / -0

    Let \(\mathrm{P}\) be a square matrix such that \(\mathrm{P}^2=\mathrm{I}-\mathrm{P}\). For \(\alpha, \beta, \gamma, \delta \in \mathrm{N}\), if \(\mathrm{P}^\alpha+\mathrm{P}^\beta=\gamma \mathrm{I}-29 \mathrm{P}\) and \(\mathrm{P}^\alpha-\mathrm{P}^\beta=\delta \mathrm{I}-13 \mathrm{P}\), then \(\alpha+\beta+\gamma-\delta\) is equal to :

    Solution

    \( \mathrm{P}^2=\mathrm{I}-\mathrm{P} \\\)

    \( \mathrm{P}^\alpha+\mathrm{P}^\beta=\gamma \mathrm{I}-29 \mathrm{P} \\\)

    \( \mathrm{P}^\alpha-\mathrm{P}^\beta=\delta \mathrm{I}-13 \mathrm{P} \\\)

    \( \mathrm{P}^4=(\mathrm{I}-\mathrm{P})^2=\mathrm{I}+\mathrm{P}^2-2 \mathrm{P} \\\)

    \( \mathrm{P}^4=\mathrm{I}+\mathrm{I}-\mathrm{P}-2 \mathrm{P}=2 \mathrm{I}-3 \mathrm{P} \\\)

    \( \mathrm{P}^8=\left(\mathrm{P}^4\right)^2=(2 \mathrm{I}-3 \mathrm{P})^2=4 \mathrm{I}+9 \mathrm{P}^2-12 \mathrm{P} \\\)

    \( =4 \mathrm{I}+9(\mathrm{I}-\mathrm{P})-12 \mathrm{P} \\\)

    \( \mathrm{P}^8=13 \mathrm{I}-21 \mathrm{P} \ldots(1) \\\)

    \( \mathrm{P}^6=\mathrm{P}^4 \cdot \mathrm{P}^2=(2 \mathrm{I}-3 \mathrm{P})(\mathrm{I}-\mathrm{P}) \\\)

    \( =2 \mathrm{I}-5 \mathrm{P}+3 \mathrm{P}^2 \\\)

    \( =2 \mathrm{I}-5 \mathrm{P}+3(\mathrm{I}-\mathrm{P}) \\\)

    \( =5 \mathrm{I}-8 \mathrm{P} \ldots(2)\)

    \( (1)+(2) \\\)

    \(P^8+P^6=18 I-29 P\)

    (1) \(-(2)\)

    \(\mathrm{P}^8-\mathrm{P}^6=8 \mathrm{I}-13 \mathrm{P}\)

    From (A) \(\alpha=8, \beta=6\)

    \(\gamma=18 \\\)

    \(\delta=8 \\\)

    \( \alpha+\beta+\gamma-\delta=32-8=24\)

  • Question 3
    1 / -0

    If \(\underset{{{{x} \rightarrow \infty}}}{\lim}\left(\frac{{x}^{2}+{x}+1}{{x}+1}-{px}-{q}\right)=-3\), then \({p}\) and \({q}\) is:

    Solution

    Given:

    \(\underset{{{{x} \rightarrow \infty}}}{\lim}\left(\frac{{x}^{2}+{x}+1}{{x}+1}-{px}-{q}\right)=-3\)

    On simplifying, we get:

    \(\Rightarrow \underset{{{x \rightarrow \infty}}}{\lim}\left(\frac{x^{2}+x+1-p x^{2}-p x-q x-q}{x+1}\right)=-3\)

    \(\Rightarrow \underset{{{x \rightarrow \infty}}}{\lim}\left(\frac{x^{2}(1-p)+x(1-p-q)+1-q}{x+1}\right)=-3\)

    As we can see limit gives finite value. So, this is possible only when the coefficient of higher degree term will be zero.

    Therefore,

    \((1-p)=0\)

    Or, \( {p}=1\)

    \(\Rightarrow \underset{{{x \rightarrow \infty}}}{\lim}\left(\frac{{x}(1-{p}-{q})+1-{q}}{{x}+1}\right)=-3\) ....(1)

    Dividing and multiplying by\(x\) in both numerator and denominator, we get:

    \(\Rightarrow \underset{{{x \rightarrow \infty}}}{\lim}\left(\frac{{x}\left[(1-{p}-{q})+\frac{(1-{q})}{{x}}\right]}{{x}\left[1+\frac{1}{{x}}\right]}\right)=-3\)

    \(\Rightarrow \underset{{{x \rightarrow \infty}}}{\lim}\left(\frac{\left[(1-{p}-{q})+\frac{(1-{q})}{{x}}\right]}{\left[1+\frac{1}{{x}}\right]}\right)=-3\)

    \(\Rightarrow\left(\frac{[(1-p-q)+0]}{[1+0]}\right)=-3\)

    \(\Rightarrow(1-p-q)=-3\)

    \(\Rightarrow(1-1-q)=-3 \quad(\because p=1)\)

    \(\therefore q=3\)

  • Question 4
    1 / -0

    Consider the following statements:

    1. The null set is a subset of every set.

    2. Every set is a subset of itself.

    3. If a set has \(10\) elements, then its power set will have \(1024\) elements.

    Which of the above statements are correct?

    Solution

    1. The null set is a subset of every set - The intersection of two sets is a subset of each of the original sets.

    So if \(\{ \}\) is the empty set and \(A\) is any set then \(\{ \}\) intersect \(A\) is \(\{ \}\) which means \(\{ \}\) is a subset of \(A\) and \(\{ \}\) is a subset of \(\{ \}\).

    You can prove it by contradiction. Let's say that you have the empty set \(\{ \}\) and a set \(A\).

    2. Every set is a subset of itself. 

    When we say that a set A is a subset of B, we mean that every element in A is also in B. A Venn diagram shows this nicely:

    \((A\subseteq A)\)

    This also means that every set, A, is a subset of itself because every element of A is obviously an element of A.

    3. If \(n=10\) then \(2^{10}=1024\)

    So, all three statements are true.

  • Question 5
    1 / -0

    If \((a, b)\) be the orthocentre of the triangle whose vertices are \((1,2),(2,3)\) and \((3,1)\), and \(I_1=\int_a^b x \sin \left(4 x-x^2\right) d x, I_2=\int_a^b \sin \left(4 x-x^2\right) d x\), then \(36 \frac{I_1}{I_2}\) is equal to :

    Solution

    \(\begin{aligned} & \text { Equation of CE } \\ & \begin{array}{l}y-1=-(x-3) \\ x+y=4\end{array}\end{aligned}\)

    orthocentre lies on the line \(x+y=4\)

    \( \text { so, } \underset{a}{b}+b=4 \\\)

    \( I_1=\int_a^b x \sin (x(4-x)) d x \ldots \ldots \ldots \ldots . \text { (i) }\)

    Using king rule

    \(I_1=\int_{\mathrm{a}}^{\mathrm{h}}(4-\mathrm{x}) \sin (\mathrm{x}(4-\mathrm{x})) \mathrm{dx}\)

    \( \text { (i) }+ \text { (ii) } \\\)

    \( 2 I_1=\int_{\mathrm{a}}^{\mathrm{b}} 4 \sin (\mathrm{x}(4-\mathrm{x})) \mathrm{dx} \\\)

    \( 2 \mathrm{I}_1=4 \mathrm{I}_2 \\\)

    \( \mathrm{I}_1=2 \mathrm{I}_2 \\\)

    \( \frac{\mathrm{I}_1}{\mathrm{I}_2}=2 \\\)

    \( \frac{36 \mathrm{I}_1}{\mathrm{I}_2}=72\)

  • Question 6
    1 / -0

    If \({ }^{2 n} P_{3}=100^{n} P_{2}\), then the value of \(n\) is:

    Solution

    Given:

    \({ }^{2 n} P_{3}=100^{n} P_{2}\)

    We know that:

    \(P_{r}=\frac{n !}{(n-r) !}\)

    \(n !=1 \times 2 \times 3 \times \ldots \times n\)

    \(0 !=1\)

    Therefore,

    \({ }^{2 n} P_{3}=100^{n} P_{2}\)

    \(\Rightarrow \frac{2 n !}{(2 n-3) !}=100 \frac{n !}{(n-2) !}\)

    Expanding the expression on both sides of the equation, we get:

    \(\Rightarrow(2 n)(2 n-1)(2 n-2)=100(n)(n-1)\)

    \(\Rightarrow 2 n-1=25, n \neq 1\)

    \(\Rightarrow n=13\)

  • Question 7
    1 / -0

    If \(\mathrm{A}=\left[\begin{array}{ll}x & 2 \\ 4 & 3\end{array}\right]\) and \(\mathrm{A}^{-1}=\left[\begin{array}{cc}\frac{1}{8} & \frac{-1}{12} \\ \frac{-1}{6} & \frac{4}{9}\end{array}\right]\), then find the value of \({x}\) ?

    Solution

    \(A \times A^{-1}=1\), where \(I\) is an identity matrix

    \(|A|=\frac{1}{\left|A^{-1}\right|}\)

    Given,

    \(\mathrm{A}=\left[\begin{array}{ll}x & 2 \\ 4 & 3\end{array}\right]\) and \(\mathrm{A}^{-1}=\left[\begin{array}{cc}\frac{1}{8} & \frac{-1}{12} \\ \frac{-1}{6} & \frac{4}{9}\end{array}\right]\)

    \(\left|\mathrm{A}^{-1}\right|=\frac{4}{72}-\frac{1}{72}=\frac{3}{72}=\frac{1}{24}\)

    \(|\mathrm{~A}|=\frac{1}{\left|\mathrm{~A}^{-1}\right|}=24\)

    \(\Rightarrow 3 {x}-8=24\)

    \(\therefore {x}=\frac{32}{3}\)

  • Question 8
    1 / -0

    The Cartesian equations of a line are \(5 x-3=3 y+4=2 z-3\). Direction ratios of the line are:

    Solution

    The given equation of line is:

    \(5 x-3=3 y+4=2 z-3\)

    \(\Rightarrow 5\left(x-\frac{3}{5}\right)=3\left(y+\frac{4}{3}\right)=2\left(z-\frac{3}{2}\right)\)

    \(\Rightarrow \frac{x-\frac{3}{5}}{\frac{1}{5}}=\frac{y+\frac{4}{3}}{\frac{1}{3}}=\frac{z-\frac{3}{2}}{\frac{1}{2}}\)

    So, the equation has Direction Ratios as \(\left(\frac{1}{5},\frac{1}{3},\frac{1}{2}\right)\).

  • Question 9
    1 / -0

    Evaluate the following expression: \(\sin x+\sin (x-\pi)+\sin (x+\pi)\)

    Solution

    Given,

    \(\sin x+\sin (x-\pi)+\sin (x+\pi)\)

    We know that,

    \(\sin (\pi-x)=\sin x\)

    \(\sin (\pi+x)=-\sin x\)

    \(\sin (-x)=-\sin x \)

    Therefore,

    \(=\sin x-\sin (\pi-x)-\sin (\pi+x)\)

    \(=\sin x-\sin (\pi-x)-\sin x\)

    \(=-\sin (\pi-x)\)

    \(=-\sin x\)

  • Question 10
    1 / -0

    A water tank has the shape of an inverted right circular cone, whose semi-vertical angle is tan1(1/2) . Water is poured into it at a constant rate of 5 cubic meter per minute. Then the rate (in m/min.), at which the level of water is rising at the instant when the depth of water in the tank is 10m; is:

    Solution

    Given that water is poured into the tank at a constant rate of \(5 \mathrm{~m}\) minute.

    \(\therefore \frac{\mathrm{dv}}{\mathrm{dt}}=5 \mathrm{~m}^3 / \mathrm{min}\)

    Volume of the tank is,

    \(\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^2 \mathrm{~h}, \ldots . . . .(\mathrm{i})\)

    where \(\mathrm{r}\) is radius and \(\mathrm{h}\) is height at any time.

    By the diagram,

    \(\tan \theta=\frac{\mathrm{r}}{\mathrm{h}}=\frac{1}{2} \\\)

    \( \Rightarrow \mathrm{h}=2 \mathrm{r} \Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{2 \mathrm{dr}}{\mathrm{dt}} \ldots . . . \text { (ii) }\)

    Differentiate eq. (i) w.r.t. ' \(t\) ', we get

    \(\frac{d V}{d t}=\frac{1}{3}\left(\pi 2 r \frac{d r}{d t} h+\pi r^2 \frac{d h}{d t}\right)\)

    Putting \(\mathrm{h}=10, \mathrm{r}=5\) and \(\frac{\mathrm{dV}}{\mathrm{dt}}=5\) in the above equation.

    \(5=\frac{75 \pi}{3} \frac{\mathrm{dh}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{1}{5 \pi} \mathrm{m} / \min\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now