Self Studies

Mathematics Test - 36

Result Self Studies

Mathematics Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What is the area bounded by \(y=\tan x, y=0\) and \(x=\frac{\pi}{4}?\)

    Solution

    \(y=\tan x, y=0\) and \(x=\frac{\pi}{4}\)

    Let us first draw the graph for above, we get:

    \(\therefore\) Area \(=\int_{0}^{\frac{\pi}{4}} y ~d x\)

    \(=\int_{0}^{\frac{\pi}{4}} \tan x ~d x\)

    \(=[\ln |\sec x|]_{0}^{\frac{\pi}{4}}\)

    \(=\ln \left(\sec \frac{\pi}{4}\right)-\ln \left(\sec 0\right)\)

    \(=\ln (\sqrt{2})-\ln 1\)

    \(=\ln (2)^{(\frac{1}{2})}\)

    \(=\frac{\ln (2)}{2}\)

  • Question 2
    1 / -0

    What is the distance of the point whose position vector is \(2 \vec{i}-\vec{j}-3 \vec{k}\) from the plane \(\vec{r} \cdot(\vec{i}+2 \vec{j}-4 \vec{k})=9\)?

    Solution

    We have \(\overrightarrow{\mathrm{a}}=2 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}-3 \overrightarrow{\mathrm{k}}, \overrightarrow{\mathrm{n}}=\overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}-4 \overrightarrow{\mathrm{k}}\) and \(\mathrm{d}=9\)

    Using the formula, Distance \(=\frac{|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}-\mathrm{d}|}{|\overrightarrow{\mathrm{n}}|}\).

    Distance \(=\frac{|(2 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}-3 \overrightarrow{\mathrm{k}}) \cdot(\overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}-4 \overrightarrow{\mathrm{k}})-9|}{|\overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}-4 \overrightarrow{\mathrm{k}}|}\)

    \(=\frac{|2-2+12-9|}{\sqrt{1^{2}+2^{2}+(-4)^{2}}}\)

    \(=\frac{3}{\sqrt{21}}=\frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3} \times \sqrt{7}}=\sqrt{\frac{3}{7}}\)

  • Question 3
    1 / -0

    If \(\lambda\) be the ratio of the roots of the quadratic equation in \(x\), \(3 m^2 x^2+m(m-4) x+2=0\), then the least value of \(m\) for which \(\lambda+\frac{1}{\lambda}=1\), is:

    Solution

    Let roots of the quadratic equation are \(\alpha, \beta\).

    Given, \(\lambda=\frac{\alpha}{\beta}\) and \(\lambda+\frac{1}{\lambda}=1 \Rightarrow \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=1\)

    \(\frac{(\alpha+\beta)^2-2 \alpha \beta}{\alpha \beta}=1 \text {. }\)

    The quadratic equation is, \(3 m^2 x^2+m(m-4) x+2=0\)

    \(\therefore \alpha+\beta=\frac{\mathrm{m}(4-\mathrm{m})}{3 \mathrm{~m}^2}=\frac{4-\mathrm{m}}{3 \mathrm{~m}} \text { and } \alpha \beta=\frac{2}{3 \mathrm{~m}^2}\)

    Put these values in eq (1)

    \(\frac{\left(\frac{4-m}{3 m}\right)^2}{\frac{2}{3 m^2}}=3\)

    \(\Rightarrow(m-4)^2=18 \Rightarrow m=4 \pm \sqrt{18}\)

    Therefore, least value is

    \(4-\sqrt{18}=4-3 \sqrt{2}\)

  • Question 4
    1 / -0

    The relation 'has the same father as' over the set of children is:

    Solution

    For a, b in the set of children, we say that a and b are related if a has the same father as b.

    Now, we will check for each property one by one.

    The relation is obviously reflexive as a has the same father as a.

    Therefore, aRa .... (1)

    If a has the same father as b, then that means both a and b have the same father.

    Therefore, b also has the same father as a. Thus, the relation is symmetric.

    Therefore, aRb implies bRa .... (2)

    Now, assume that aRb and bRc.

    That means a has the same father as b and b has the same father as c. This implies that a, b and c have the same father.

    Therefore, a has the same father as c. Thus, the relation is transitive.

    Therefore, aRb, bRc implies aRc .... (3)

    Thus, from (1), (2) and (3), we conclude that the given relation is an equivalence relation.

  • Question 5
    1 / -0

    The value of \(2 \tan ^{-1}\left[\operatorname{cosec}\left(\tan ^{-1} x\right)-\tan \left(\cot ^{-1} x\right)\right]\) is:

    Solution

    Given,

    \(2 \tan ^{-1}\left[\operatorname{cosec}\left(\tan ^{-1} x\right)-\tan \left(\cot ^{1} x\right)\right]\)

    \(=2 \tan ^{-1}\left[\operatorname{cosec}\left(\tan ^{-1} x\right)-\tan \left(90-\tan ^{-1} x\right)\right]\)

    Let \(\tan ^{-1} x=\theta\)

    \(=2 \tan ^{-1}[\operatorname{cosec} \theta-\tan (90-\theta)]\)

    \(=2 \tan ^{-1}[\operatorname{cosec} \theta-\cot \theta]\)\(\quad\quad(\because \tan(90 - \theta = \cot \theta)\)

    \(=2 \tan ^{-1}\left[\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right]\)\(\quad\quad(\because \operatorname{cosec} \theta = \frac{1}{\sin \theta}, \cot \theta = \frac{\cos \theta}{\sin \theta}) \)

    \(=2 \tan ^{-1}\left[\frac{1-\cos \theta}{\sin \theta}\right]\)

    \(=2 \tan ^{-1}\left[\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right]\)

    \(=2 \tan ^{-1}\left[\tan \frac{\theta}{2}\right]\)

    \(\theta=\tan ^{-1} x\)

  • Question 6
    1 / -0
    The solution of the differential equation \(\frac{{d} y}{{dx}}=2^{x-1}\) is:
    Solution

    Given, \(\frac{{dy}}{{dx}}=2^{{x}-1}\)

    \(\Rightarrow \frac{d y}{d x}=\frac{2^{x}}{2}\) \(\Rightarrow 2 d y=2^{x} {dx}\)

    Now, variables are separated.

    Integrating both sides,

    We get 
    \(2 \int d y=\int 2^{x} d x \quad\left(\because \int a^{x} d x=\frac{a^{x}}{\operatorname{loga}}\right)\)

    \(\Rightarrow 2 y=\frac{1}{\log 2} 2^{x}+c\)

  • Question 7
    1 / -0
    If \(\left(a^{2}+b^{2}\right) x^{2}+2(a b+b d) x+c^{2}+d^{2}=0\) has no real roots then:
    Solution

    We know, for no real roots, \(D=b^{2}-4 a c<0\)

    Given equation is \(\left(a^{2}+b^{2}\right) x^{2}+2(a b+b d) x+c^{2}+d^{2}=0\)

    Here, \(a=\left(a^{2}+b^{2}\right), b=2(a b+b d), c=c^{2}+d^{2}\)

    \(\left[(a c+b d)^{2}\right]-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)<0\)

    \(\Rightarrow\left[4\left(a^{2} c^{2}+b^{2} d^{2}+2 a b c d\right)\right]-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)<0\)

    \(\Rightarrow 4\left[\left(a^{2} c^{2}+b^{2} d^{2}+2 a b c d\right)-\left(a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2}\right)\right]<0\)

    \(\Rightarrow 4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2}\right]<0\)

    \(\Rightarrow 4\left[2 a b c d-b^{2} c^{2}-a^{2} d^{2}\right]<0\)

    \(\Rightarrow-4\left[a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right]<0\)

    \(\Rightarrow-4[a d-b c]^{2}<0\)

    Therefore.

    \((a d-b c)<0\)

    or \({ad}<{bc}\)

    \(\therefore a d \neq b c\)

  • Question 8
    1 / -0

    Which of the following is true regarding the function \(f(x)=\log (\sin x)\)?

    Solution

    Given: \(f(x)=\log (\sin x)\)

    Let's examine the function \(f ( x )\) on the interval \(\left(0, \frac{\pi}{2}\right)\)

    So, first let's calculate \(f ^{\prime}( x )\)

    \(f^{\prime}(x)=\frac{1}{\sin x} \cdot \frac{d(\sin x)}{d x}=\cot x\)

    As we know that \(\cot x>0 \forall x \in \left(0, \frac{\pi}{2}\right)\)

    \(f^{\prime}(x)>0 \forall x \in\left(0, \frac{\pi}{2}\right)\)

    As we know that for a strictly increasing function \(f^{\prime}(x)>0\) for all \(x \in(a, b)\) So, the given function \(f ( x )\) is a strictly increasing function on \(\left(0, \frac{\pi}{2}\right)\)

    \(\therefore\) Option (A) is true

    Now let's the function \(f ( x )\) on the interval \(\left(0, \frac{\pi}{2}\right)\)

    As we know that, \(f^{\prime}(x)=\cot x\) and \(\cot x<0 \forall x \in\left(0, \frac{\pi}{2}\right)\)

    \(f^{\prime}(x)<0 \forall x \in\left(0, \frac{\pi}{2}\right)\)

    As we know that for a strictly decreasing function \(f^{\prime}(x)<0\) for all \(x \in(a, b)\) So, the given function \(f ( x )\) is a strictly decreasing function on \(\left(\frac{\pi}{2}, \pi\right)\)

    \(\therefore\) Option (B) is true.

  • Question 9
    1 / -0

    The coordinate of foot of perpendicular drawn from the point \(A(1,0,3)\) to the join of the point \(B(4,7,1)\) and \(C(3,5,3)\) are:

    Solution

    Let \(D\) be foot of perpendicular.

    The direction ratio of line \(B C\) is:

    \(3-4,5-7,3-1=-1,-2,2\)

    Equation of \({BC}\),

    \(\frac{{x}-4}{3-4}=\frac{{y}-7}{5-7}=\frac{{z}-1}{3-1} \)

    \(\Rightarrow \frac{{x}-4}{-1}=\frac{{y}-7}{-2}=\frac{{z}-1}{2}={k}\) (let)

    \(\Rightarrow {x}=-{k}+4, {y}=-2 {k}+7\) and \({z}=2 {k}+1\)

    General point on \(B C\) be \(D=(-k+4,-2 k+7,2 k+1)\)

    Direction ratio of line \(A D\) will be

    \(-k+4-1,-2 k+7-0,2 k+1-3\)

    \(-k+3,-2 k+7,2 k-2\)

    Now, since the line \(B C\) and \(A D\) are perpendicular,

    \((-\mathrm{k}+3) \times-1+(-2 {k}+7) \times-2+(2 {k}-2) \times 2=0 \)

    \(\Rightarrow {k}-3+4 {k}-14+4 {k}-4=0 \)

    \(\Rightarrow 9 {k}=21 \)

    \(\Rightarrow {k}=\frac{7}{3} \)

    \(\Rightarrow {D}=(-7 / 3+4,-2 \times(7 / 3)+7,2 \times(7 / 3)+1) \)

    \(\therefore {D}=\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)\)

  • Question 10
    1 / -0

    If the shortest distance between the lines \(\frac{x-4}{1}=\frac{y+1}{2}=\frac{z}{-3}\) and \(\frac{x-\lambda}{2}=\frac{y+1}{4}=\frac{z-2}{-5}\) is \(\frac{6}{\sqrt{5}}\), then the sum of all possible values of \(\lambda\) is :

    Solution

    \(\begin{aligned} & \frac{x-4}{1}=\frac{y+1}{2}=\frac{z}{-3} \\ & \frac{x-\lambda}{2}=\frac{y+1}{4}=\frac{z-2}{-5}\end{aligned}\)

    the shortest distance between the lines

    \(=\left|\frac{(\vec{a}-\vec{b}) \cdot\left(\overrightarrow{d_1} \times \overrightarrow{d_2}\right)}{\left|\overrightarrow{d_1} \times \overrightarrow{d_2}\right|}\right|\)

    \(=\left|\frac{\left|\begin{array}{ccc}\lambda-4 & 0 & 2 \\ 1 & 2 & -3 \\ 2 & 4 & -5\end{array}\right|}{\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5\end{array}\right|}\right|\)

    \(=\left|\frac{(\lambda-4)(-10+12)-0+2(4-4)}{12 \hat{i}-1 \hat{j}+0 \hat{k}}\right|\)

    \(\frac{6}{\sqrt{5}}=\left|\frac{2(\lambda-4)}{\sqrt{5}}\right|\)

    3=|λ4|
    λ4=±3
    λ=7,1
    Sum of all possible values of λ is =8

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now