Self Studies

Mathematics Test - 37

Result Self Studies

Mathematics Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(A=\left\{x \in \mathbb{C}: x^{4}-1=0\right\}\)

    \(B=\left\{x \in \mathbb{C}: x^{2}-1=0\right\}\)

    \(C=\left\{x \in \mathbb{C}: x^{2}+1=0\right\}\)

    Where \(\mathbb{C}\) is complex plane.

    Solution

    \(A=\{1,-1, i,-i\}\)

    \(B=\{1,-1\}\)

    \(C=\{i,-i\}\)

    Now, \(B \cup C=\{1,-1, i,-i\}=A\)

  • Question 2
    1 / -0

    Find the equation of tangent of \(y=x^2\) at \(x=1\)

    Solution

    Given: \(y = x ^2\) and \(x=1\)

    As we know that equation of tangent is \(\frac{y-f(a)}{x-a}=f^{\prime}(a)\) for the function \(y = f ( x )\) at \(x\) \(= a\)

    First find \(f ( a )\) and \(f ^{\prime}( a )\)

    \( f(1)=1 \)

    \(\Rightarrow f^{\prime}(x)=2 x \text { and } f^{\prime}(1)=2\)

    As we know that equation of tangent is \(\frac{y-f(a)}{x-a}=f^{\prime}(a)\) for the function \(y = f ( x )\) at \(x\)\(= a \)

    \( \frac{y-1}{x-1}=2\)

    \( \Rightarrow y =2 x -1\)

    Hence, the equation of tangent is \(y=2 x-1\).

  • Question 3
    1 / -0

    A unit vector which is perpendicular to the vector \(2 \hat{i}-\hat{j}+2 \hat{k}\) and is coplanar with the vectors \(\hat{i}+\hat{j}-\hat{k}\) and \(2 \hat{i}+2 \hat{j}-\hat{k}\) is:

    Solution

    Let \(\hat{x_i}+y \hat{j}+z \hat{k}\) be the required unit vector.

    Since \(\hat{a}\) is perpendicular to \((2 \hat{i}-\hat{j}+2 \hat{k})\).

    \(\therefore 2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=0\)

    Since vector \(x \hat{i}+y \hat{j}+z \hat{k}\) is coplanar with the vector \(\hat{i}+\hat{j}-\hat{k}\) and

    \(2 \hat{i}+2 \hat{j}-\hat{k} \\\)

    \( \therefore x_i+y \hat{j}+z \hat{k}=p(\hat{i}+\hat{j}-\hat{k})+q(2 \hat{i}+2 \hat{j}-\hat{k})\)

    where \(\mathrm{p}\) and \(\mathrm{q}\) are some scalars.

    \(\Rightarrow x\hat{i}+y \hat{j}+z \hat{k}=(p+2 q) \hat{i}+(p+2 q) \hat{j}-(p+q) \hat{k} \)

    \(\Rightarrow x=p+2 q, y=p+2 q, z=-p-q\)

    Now from equation (i),

    \( 2 p+4 q-p-2 q-2 p-2 q=0 \\\)

    \(\Rightarrow-p=0 \Rightarrow p=0 \\\)

    \( \therefore x=2 q, y=2 q, z=-q\)

    Since vector \(\hat{x_i}+y \hat{j}+z \hat{k}\) is a unit vector, therefore

    \( \left|\hat{x_i}+y \hat{j}+z \hat{k}\right|=1 \\\)

    \( \Rightarrow \sqrt{x^2+y^2+z^2}=1 \\\)

    \( \Rightarrow x^2+y^2+z^2=1 \\\)

    \( \Rightarrow 4 q^2+4 q^2+q^2=1 \\\)

    \( \Rightarrow 9 q^2=1 \Rightarrow q= \pm \frac{1}{3}\)

    When \(\mathrm{q}=\frac{1}{3}\), then \(\mathrm{x}=\frac{2}{3}, \mathrm{y}=\frac{2}{3}, \mathrm{z}=-\frac{1}{3}\)

    When \(\mathrm{q}=-\frac{1}{3}\), then \(\mathrm{x}=-\frac{2}{3}, \mathrm{y}=-\frac{2}{3}, \mathrm{z}=\frac{1}{3}\)

    Here required unit vector is \(\frac{2 \hat{i}+2 \hat{j}-1 \hat{k}}{3}\)

    or \(-\frac{2}{3} \hat{i}-\frac{2}{3} \hat{j}+\frac{1}{3} \hat{k}\)

  • Question 4
    1 / -0

    Let \(A=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]\). If \(B=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right] A\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]\), then the sum of all the elements of the matrix \(\sum_{n=1}^{50} B^n\) is equal to:

    Solution

    Let \(C=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right], D=\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]\)

    \(\mathrm{DC}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathrm{I}\)

    B=CAD
    Bn=(CAD)(CAD)(CAD)......(CAD)n-times 
    Bn=CAnD...(1)

    \(A^3=\left[\begin{array}{cc}1 & \frac{3}{51} \\ 0 & 1\end{array}\right]\)

    Similarly \(A^n=A^3=\left[\begin{array}{cc}1 & \frac{n}{51} \\ 0 & 1\end{array}\right]\)

    \(\mathrm{Bn}\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}1 & \frac{\mathrm{n}}{51} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]\)

    \(=\left[\begin{array}{cc}1 & \frac{\mathrm{n}}{51}+2 \\ -1 & -\frac{\mathrm{n}}{51}-1\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]\)

    \(=\left[\begin{array}{cc}\frac{\mathrm{n}}{51}+1 & \frac{\mathrm{n}}{51} \\ -\frac{\mathrm{n}}{51} & 1-\frac{\mathrm{n}}{51}\end{array}\right]\)

    \(\sum_{n=1}^{50} B^n=\left[\begin{array}{cc}25-50 & 25 \\ -25 & -25-50\end{array}\right]=\left[\begin{array}{cc}75 & 25 \\ -25 & 25\end{array}\right]\)

    Sum of the elements =100

  • Question 5
    1 / -0

    If \(\left|\begin{array}{ccc}a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3\end{array}\right|=0\) and vectors \(\left(1, a, a^2\right),\left(1, b, b^2\right)\) and \(\left(1, c, c^2\right)\) are noncoplanar, then the product abc equals:

    Solution

    Given \(\left|\begin{array}{lll}a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3\end{array}\right|=0\)

    \(\Rightarrow\left|\begin{array}{ccc}a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1\end{array}\right|+\left|\begin{array}{ccc}a & a^2 & a^3 \\ b & b^2 & b^3 \\ c & c^2 & c^3\end{array}\right|=0\)

    \(\Rightarrow(1+a b c)\left|\begin{array}{lll}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{array}\right|=0\)

    Given that\(\left(1, a, a^2\right),\left(1, b, b^2\right)\) and \(\left(1, c, c^2\right)\) are non-coplanar

    \(\therefore\left|\begin{array}{lll}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{array}\right| \neq 0\) (given condition)

    \(\therefore 1+a b c=0 \Rightarrow a b c=-1\)

  • Question 6
    1 / -0

    Prove the following by using the principle of mathematical induction for all \(\mathrm{n} \in \mathrm{N}: 41^{\mathrm{n}}-14^{\mathrm{n}}\) is:

    Solution

    Given:

    \(\mathrm{P}(\mathrm{n}): 41^{\mathrm{n}}-14^{\mathrm{n}}\) is a multiple of 27.

    \(\mathrm{P}(\mathrm{n})\) is true for \(\mathrm{n}=1\) since \(41^{1}-14^{1}=27\), which is a multiple of 27.

    Let \(\mathrm{P}(\mathrm{k})\) be true for some positive integer \(\mathrm{k}\),

    So, \(41^{\mathrm{k}}-14^{\mathrm{k}}\) is a multiple of 27.

    \(41^{\mathrm{k}}-14^{\mathrm{k}}=27 \mathrm{~m}\), where \(\mathrm{m} \in \mathrm{N} \ldots \ldots \ldots\) (i)

    We shall now prove that \(\mathrm{P}(\mathrm{k}+1)\) is true whenever \(\mathrm{P}(\mathrm{k})\) is true.

    Consider\(41^{\mathrm{k}+1}-14^{\mathrm{k}+1} \)

    \(=41^{\mathrm{k}} .41-14^{\mathrm{k}} \cdot 14 \)

    \(=41\left(27 \mathrm{~m}+14^{\mathrm{k}}\right)-14^{\mathrm{k}} 14 .....[\mathrm{using}(\mathrm{i})] \)

    \(=41.27 \mathrm{~m}+41.14^{\mathrm{k}}-14.14^{\mathrm{k}} \)

    \(=41.27 \mathrm{~m}+27.14^{\mathrm{k}} \)

    \(=27\left(41 \mathrm{~m}+14^{\mathrm{k}}\right)\)

    \(=27 \times \mathrm{r}\), where \(\mathrm{r}=\left(41 \mathrm{~m}+14^{\mathrm{k}}\right)\) is a natural number

    Therefore, \(41^{\mathrm{k}+1}-14^{\mathrm{k}+1}\) is a multiple if 27.

    Thus, \(\mathrm{P}(\mathrm{k}+1)\) is true whenever \(\mathrm{P}(\mathrm{k})\) is true.

  • Question 7
    1 / -0

    \(A\) and \(B\) are two events such that \(P(A)=0.3\) and \(P(A \cup B)=0.8\). If \(A\) and \(B\) are independent, then \(p(B)\) is

    Solution

    Given:

    \(P(A)=0.3\) and \(P(A \cup B)=0.8\)

    Formula used:

    \(P(A \cup B)=P(A)+P(B)-P(A) \times P(B)\)

    Two events are independent if the incidence of one event does not affect the probability of the other event.

    We know that,

    \(P(A \cup B)=P(A)+P(B)-P(A) \times P(B)\)

    \(\Rightarrow 0.8=0.3+P(B)-0.3 \times P(B)\)

    \(\Rightarrow 0.5=P(B)[1-0.3]=0.7 P(B)\)

    \(\Rightarrow P(B)=\frac{0.5 }{0.7}\)

    \(\therefore P(B)=\frac{5}{7}\)

  • Question 8
    1 / -0
    If \(f(x)=\left\{\begin{array}{cl}\frac{\sin 3 x}{e^{2 x}-1}, & x \neq 0 \\ k-2, & x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\) ?
    Solution

    Since \(f(x)\) is given to be continuous at \(x=0\),

    \(\lim _{{x} \rightarrow 0} {f}({x})={f}(0)\)

    Also, \(\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)\) because \(f(x)\) is same for \(x>0\) and \(x<0\).

    \(\therefore \lim _{x \rightarrow 0} f(x)=f(0)\)

    We know that,

    \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)

    \(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\)

    Therefore,

    \( \lim _{x \rightarrow 0} \frac{\sin 3 x}{e^{2 x}-1}=k-2\)

    Multiplying and dividing by \(3 x\) in numerator and by \(2 x\) in denominator,

    We get,

    \(\lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{3 x} \times 3 x}{\frac{e^{2 x}-1}{2 x} \times 2 x}=k-2\)

    \(\Rightarrow \frac{3}{2}=k-2\)

    \(\Rightarrow k=\frac{7}{2}\)

  • Question 9
    1 / -0

    In a box, 4 coins of ten rupees, 2 coins of five rupees, 2 coins of two rupees and 2 coins of one rupee are put. Now, three coins are taken out randomly. What is the probability that the amount drawn is 12 rupees?

    Solution
    There are 4 coins of ten rupees, 2 coins of five rupees, 2 coins of two rupees and 2 coins of one rupee.
    Total coins \(=4+2+2+2\) \(=10\)
    Number of all combinations of \(n\) things, taken \(r\) at a time, is given by \({ }^n C_r=\frac{n !}{(r) !(n-r) !}\)
    Total number of ways in which 3 coins can be taken out \(={ }^{10} \mathrm{C}_3\) \(=\frac{10 !}{3 ! 7 !}\)
    \(=\frac{10 \times 9 \times 8}{3 \times 2 \times 1}=120\)
    Amount drawn can be 12 rupees in the following cases:
    (i). 1 coin of ten rupees and 2 coins of 1 rupee
    This can be done in \({ }^4 \mathrm{C}_1 \times{ }^2 \mathrm{C}_2\) ways, i.e. \(=\frac{4 !}{1 ! 3 !} \times \frac{2 !}{2 ! 0 !}=4 \times 1=4\) ways.
    (ii). 2 coins of five rupees and 1 coin of 2 rupees
    This can be done in \({ }^2 \mathrm{C}_2 \times{ }^2 \mathrm{C}_1\) ways, i.e. \(=\frac{2 !}{2 ! 0 !} \times \frac{2 !}{1 ! 1 !}=1 \times 2=2\) ways.
    Total number of ways in which 12 rupees can be drawn \(=4+2=6\)
    \(\therefore\) Probability of drawing \(12\) rupees \(=\frac{\text { Total number of ways in which } 12 \text { rupees can be drawn in three coins }}{\text { Total number of ways in which } 3 \text { coins can be drawn }}=\frac{6}{120}=\frac{1}{20}\)
  • Question 10
    1 / -0

    Find the standard deviation of \(15,20,18,22,25\).

    Solution

    Given:

    Number are \(15, 20, 18, 22\) and \(25\).

    Mean \(=\frac{\sum x}{n}\)

    \(=\frac{(15+20+18+22+25)}{5}\)

    \(=\frac{100}{5}=20\)

    X (X- mean) (X-mean)2
    15 -5 25
    20 0 0
    18 -2 4
    22 2 4
    25 5 25
        Total =58
    Standard deviation \(=\sqrt{\frac{58}{5}}=\sqrt{11.6}\)
     
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now