Let \(\hat{x_i}+y \hat{j}+z \hat{k}\) be the required unit vector.
Since \(\hat{a}\) is perpendicular to \((2 \hat{i}-\hat{j}+2 \hat{k})\).
\(\therefore 2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=0\)
Since vector \(x \hat{i}+y \hat{j}+z \hat{k}\) is coplanar with the vector \(\hat{i}+\hat{j}-\hat{k}\) and
\(2 \hat{i}+2 \hat{j}-\hat{k} \\\)
\( \therefore x_i+y \hat{j}+z \hat{k}=p(\hat{i}+\hat{j}-\hat{k})+q(2 \hat{i}+2 \hat{j}-\hat{k})\)
where \(\mathrm{p}\) and \(\mathrm{q}\) are some scalars.
\(\Rightarrow x\hat{i}+y \hat{j}+z \hat{k}=(p+2 q) \hat{i}+(p+2 q) \hat{j}-(p+q) \hat{k} \)
\(\Rightarrow x=p+2 q, y=p+2 q, z=-p-q\)
Now from equation (i),
\( 2 p+4 q-p-2 q-2 p-2 q=0 \\\)
\(\Rightarrow-p=0 \Rightarrow p=0 \\\)
\( \therefore x=2 q, y=2 q, z=-q\)
Since vector \(\hat{x_i}+y \hat{j}+z \hat{k}\) is a unit vector, therefore
\( \left|\hat{x_i}+y \hat{j}+z \hat{k}\right|=1 \\\)
\( \Rightarrow \sqrt{x^2+y^2+z^2}=1 \\\)
\( \Rightarrow x^2+y^2+z^2=1 \\\)
\( \Rightarrow 4 q^2+4 q^2+q^2=1 \\\)
\( \Rightarrow 9 q^2=1 \Rightarrow q= \pm \frac{1}{3}\)
When \(\mathrm{q}=\frac{1}{3}\), then \(\mathrm{x}=\frac{2}{3}, \mathrm{y}=\frac{2}{3}, \mathrm{z}=-\frac{1}{3}\)
When \(\mathrm{q}=-\frac{1}{3}\), then \(\mathrm{x}=-\frac{2}{3}, \mathrm{y}=-\frac{2}{3}, \mathrm{z}=\frac{1}{3}\)
Here required unit vector is \(\frac{2 \hat{i}+2 \hat{j}-1 \hat{k}}{3}\)
or \(-\frac{2}{3} \hat{i}-\frac{2}{3} \hat{j}+\frac{1}{3} \hat{k}\)