Self Studies

Mathematics Test - 38

Result Self Studies

Mathematics Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The mean deviation from the median is:

    Solution

    Case 1:

    It is a fundamental property.

    Example

    Consider a set of 5 data points

    {1, 2, 3, 4, 5}

    median = 3

    Deviation from mean:

    1 - 3 = -2

    2 - 3 = -1

    3 - 3 = 0

    4 - 3 = 1

    5 - 3 = 2

    Mean of deviations (about mean) = \(\frac{0}{5}\) = 0

    Case 2:

    Consider data point 2

    Deviations of data about 2

    1 - 2 = - 1

    2 - 2 = 0

    3 - 2 = 1

    4 - 2 = 2

    5 - 2 = 3

    Mean of deviation of data about 2 = \(\frac{(-1 + 0 + 1 + 2 + 3)}{5}\) = 1

    Mean of deviation of data about median is minimum and this is true for all data.

  • Question 2
    1 / -0

    What is the angle between the two lines whose direction numbers are \((\sqrt{3}-1,-\sqrt{3}-1,4)\) and \((-\sqrt{3}-1, \sqrt{3}-1,4)\)?

    Solution

    If \(a_{1} x+b_{1} y+c_{1} z+d_{1}=0\) and \(a_{2} x+b_{2} y+c_{2} z+d_{2}=0\) are a plane equations, then angle between planes can be found using the following formula:

    \(\cos \theta=\frac{ a _{1} a _{2}+ b _{1} b _{2}+ c _{1} c _{2}}{\sqrt{ a _{1}^{2}+ b _{1}^{2}+ c _{1}^{2}} \sqrt{ a _{2}^{2}+ b _{2}^{2}+ c _{2}^{2}}}\)

    Here,

    \(a_{1}=\sqrt{3}-1\)

    \(a_{2}=-\sqrt{3}-1\)

    \(b_{1}=-\sqrt{3}-1\)

    \(b_{2}=\sqrt{3}-1\)

    \(c_{1}=4\)

    \(c_{2}=4\)

    Therefore, required angle will be given by:

    \(\cos \theta=\frac{ a _{1} a _{2}+ b _{1} b _{2}+ c _{1} c _{2}}{\sqrt{ a _{1}^{2}+ b _{1}^{2}+ c _{1}^{2}} \sqrt{a_{2}^{2}+ b _{2}^{2}+ c _{2}^{2}}}\)

    \(\cos \theta=\frac{-2-2+16}{\sqrt{24} \sqrt{24}}\)

    \(=\frac{12}{24}\)

    \(=\frac{1}{2}\)

    \(\cos \theta = \cos \frac{\pi}{3}\)

    \(\Rightarrow \theta=\frac{\pi}{3}\)

  • Question 3
    1 / -0

    Let \(\mathrm{ABCD}\) be a parallelogram such that \(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{q}}, \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{p}}\) and \(\angle \mathrm{BAD}\) be an acute angle. If \(\vec{r}\) is the vector that coincide with the altitude directed from the vertex \(\mathrm{B}\) to the side \(\mathrm{AD}\), then \(\overrightarrow{\mathrm{r}}\) is given by :

    Solution

    Let \(\mathrm{ABCD}\) be a parallelogram such that \(\overline{\mathrm{AB}}=\overrightarrow{\mathrm{q}}, \overline{\mathrm{AD}}=\overrightarrow{\mathrm{p}}\) and \(\angle \mathrm{BAD}\) be an acute angle.

    We have

    \(\overline{\mathrm{AX}}=\left(\frac{\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}}{|\overrightarrow{\mathrm{p}}|}\right)\left(\frac{\overrightarrow{\mathrm{p}}}{|\overrightarrow{\mathrm{p}}|}\right)=\frac{\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}}{|\overrightarrow{\mathrm{p}}|^2} \vec{p}\)

    From triangle law

    Let \(\vec{r}=\overline{B X}=\overline{B A}+\overline{A X}=-\vec{q}+\frac{\vec{p} \cdot \vec{q}}{|\vec{p}|^2} \vec{p}\)

  • Question 4
    1 / -0

    Evaluate the integral \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\).

    Solution

    We know,

    \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\)

    Hence,

    \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x\)

    \(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)

    If,

    \(I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)\( \quad \ldots \ldots(i)\)

    Then,

    \(I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)\( \quad \ldots \ldots(ii)\)

    Adding to \(eq^{n}(i)+(ii)\)

    Hence,

    \(2 I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}+\frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \)

    On changing the limit,

    \(2 I=-\int_{\frac{\pi}{3}}^{\frac{\pi}{6}} 1 d x \)

    \(2I=[-x]_{\frac{\pi}{3}}^{\frac{\pi}{6}}\)

    Put the limit,

    \(2I=-[\frac{\pi}{6}-\frac{\pi}{3}]\)

    \(2 I=\frac{\pi}{6} \)

    \(I=\frac{\pi}{12}\)

  • Question 5
    1 / -0

    The solution of the set of constraints of a linear programming problem is a convex (open or closed) is called ___________ region.

    Solution

    The solution of the set of constraints of a linear programming problem is a convex (open or closed) is called feasible region.A feasible region or solution space is the set of all possible points problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints.

  • Question 6
    1 / -0

    If \(y=y(x)\) is the solution of the differential equation \(\frac{d y}{d x}+(\tan x) y=\sin x, 0 \leq x \leq \frac{\pi}{3}\), with \(y(0)=0\), then \(y\left(\frac{\pi}{4}\right)\) is equal to:

    Solution

    Given, \(\frac{\mathrm{dy}}{\mathrm{dx}}+(\tan \mathrm{x}) \mathrm{y}=\sin \mathrm{x}, \mathrm{x} \in\left[0, \frac{\pi}{3}\right]\)

    which is a linear differential equation of the form of \(\frac{d y}{d x}+P y=Q\)

    Here, \(P=\tan \mathrm{x}\)

    \(\therefore \quad \text { IF }=\mathrm{e}^{\int \operatorname{Pd} x} \\\)

    \(\Rightarrow \mathrm{e}^{\int \tan x d x}=\mathrm{e}^{\log (\sec x)}=\sec \mathrm{x}\)

    Multiplying by \(\sec \mathrm{x}\) on both sides

    \(\frac{d y}{d x}+(\tan x) y=\sin x \\\)

    \(\sec x \frac{d y}{d x}+(\tan x \sec x) y=\sin x \sec x \\\)

    \( \Rightarrow \frac{d}{d x}(y \sec x)=\tan x \Rightarrow y \sec x=\int \tan x d x \\\)

    \( \Rightarrow y \sec x=\log (\sec x)+c \\\)

    \( y=\cos x \log (\sec x)+c \cdot \cos x \\\)

    \( y(0)=0 \\\)

    \( \Rightarrow 0=1 \cdot 0+c \cdot 1 \Rightarrow c=0 \\\)

    \( \therefore y=\cos x \cdot \log (\sec x) \\\)

    \( \Rightarrow y\left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right) \cdot \log \left(\sec \frac{\pi}{4}\right) \\\)

    \( =\frac{1}{\sqrt{2}} \log (\sqrt{2}) \\\)

    \(\left(\frac{1}{2 \sqrt{2}}\right) \log _e 2\)

  • Question 7
    1 / -0

    Solution

    We have,

    \( \frac{3}{2} x^2+\frac{5}{3} x^3+\frac{7}{4} x^4+\ldots \\\)

    = \( \left(2-\frac{1}{2}\right) x^2+\left(2-\frac{1}{3}\right) x^3+\left(2-\frac{1}{4}\right) x^4+\ldots \\\)

    = \( 2\left(x^2+x^3+x^4+\ldots\right)-\left(\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\ldots\right) \\\)

    = \( 2 \cdot \frac{x^2}{1-x}-\left[-\log _e(1-x)-x\right]\)

    [ using sum of infinite GP \(=\frac{a}{1-r}\) and logarithmic series]

    \(=\frac{2 x^2}{1-x}+x+\log _e(1-x) \\\)

    \( =\frac{2 x^2+x-x^2}{1-x}+\log _e(1-x) \\\)

    \( =\frac{x^2+x}{1-x}+\log _e(1-x) \\\)

    \( =x\left(\frac{1+x}{1-x}\right)+\log _e(1-x)\)

  • Question 8
    1 / -0

    The value of \(\int_{0}^{\frac{\pi}{3}} \sqrt{1+\sin 2 x} d x\) is:

    Solution

    We have,

    \(\int_{0}^{\frac{\pi}{3}} \sqrt{1+\sin 2 x} d x\)

    \(= \int_{0}^{\frac{\pi}{3}} \sqrt{\left(\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right)} d x\)

    \(= \int_{0}^{\frac{\pi}{3}}(\cos x+\sin x) d x\)

    \(=[\sin x-\cos x]_{0}^{\frac{\pi}{3}}\)

    \(=\left[\sin \frac{\pi}{3}-\cos \frac{\pi}{3}\right]-(\sin 0-\cos 0)\)

    \(=\left[\frac{\sqrt{3}}{2}-\frac{1}{2}\right]-(0-1)\)

    \(=\left[\frac{\sqrt{3}-1}{2}\right]+1\)

    \(= \frac{\sqrt{3}+1}{2}\)

    Thus, \(\int_{0}^{\frac{\pi}{3}} \sqrt{1+\sin 2 x} d x=\frac{\sqrt{3}+1}{2}\)

  • Question 9
    1 / -0

    The graph of the inequalities x ≥ 0, y ≥ 0, 2x + y + 6 ≤ 0 is:

    Solution

    Given inequalities x ≥ 0, y ≥ 0, 2x + y + 6 ≤ 0

    Now take x = 0, y = 0 and 2x + y + 6 = 0

    when x = 0, y = -6

    when y = 0, x = -3

    So, the points are A(0, 0), B(0, -6) and C(-3, 0)

    Since region is outside from the line 2x + y + 6 = 0
    So, it does not represent any figure.

  • Question 10
    1 / -0

    Determine the maximum value of \(Z=3 x+4 y\) if the feasible region (shaded) for a LPP is shown in Figure.

    Solution

    Given,

    The objective function,

    \(Z=3 x+4 y\)

    At O\( (0, 0) \),

    \(Z=3 \times 0+4 \times 0=0\)

    At A\( (52, 0) \),

    \(Z=3 \times 52+4 \times 0=156\)

    \(x+2 y=76\) .......(i)

    \(2 x+y=104\).......(ii)

    By multiplying equation (i) by 2, we get

    \(2 x+4 y=152\)

    \(2 x+y=104\)

    \(3 y=48\)

    \(y=16\)

    By putting the value of \(y\) in equation (i), we get

    \(x+2 \times 16=76\)

    \(x=76-32\)

    \(x=44\)

    At E \( (44, 16) \),

    \(Z=3 \times 44+4 \times 16=196\)

    At D\( (0, 38) \),

    \(Z=3 \times 0+4 \times 38=152\)

    So,\(Z\) is maximum at \((44,16)\) and its maximum value is \(196 .\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now