Self Studies

Mathematics Test - 39

Result Self Studies

Mathematics Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If \(\frac{d y}{d x}=e^{-3 y}, y=0\) when \(x=5\), value of \(x\) for \(y=5\) is:
    Solution

    Given,

    \(\frac{d y}{d x}=e^{-3 y}\)

    \(\Rightarrow \frac{d y}{e^{-3 y}}=d x \)

    \(\Rightarrow e^{3 y} d y=d x\)

    On integrating both side

    We get,

    \(\int e^{3 y} d y=\int d x \)

    \(\Rightarrow \frac{e^{3 y}}{3}=x+C \ldots \ldots(\mathrm{i}) \)

    \(\Rightarrow \frac{e^{2(0)}}{3}=5+C \quad\left(\because e^{0}=1\right) \)

    \(\Rightarrow C+5=\frac{1}{3} \)

    \(\Rightarrow C=\frac{1}{3}-5 \)

    \(\Rightarrow C=\frac{-14}{3}\)

    Substituting \(y=5\) and \(C=\frac{-14}{5}\),

    We get,

    \(\frac{e^{15}}{3}=x-\frac{14}{3}\)

    \(\Rightarrow x=\frac{e^{15}+14}{3}\)

  • Question 2
    1 / -0
    The value of \(x\) for which the function \(f(x)=\frac{x^{2}-5 x-6}{x^{2}+5 x-6}\) is not continuous are ?
    Solution

    Given,

    \(f(x)=\frac{x^{2}-5 x-6}{x^{2}+5 x-6}\)

    Here, we have to find the value of \(x\) for which \(f(x)\) is not continuous.

    So, if any function is not continuous at \(x=a\) then \(\lim _{x \rightarrow a} f(x)=l \neq f(a)\)

    So, for the function \(f(x)\) if denominator is \(0\) at \(x=\) a then we can say that \(f(a)\) is infinite and limit cannot exist.

    Let's find the value of \(x\) for which the denominator of \(f(x)\) is \(0\).

    \( x^{2}+5 x-6=0\)

    \(\Rightarrow(x+6)(x-1)=0\)

    \(\Rightarrow x=-6,1\)

  • Question 3
    1 / -0

    The area bounded by curve \(y=x|x|, x\) axes and ordinates \(x=1, x=-1\) is given by:

    Solution

    Area \(=\left|\int_{-1}^1 x\right| x|d x|=\left|\int_{-1}^0 x\right| x|d x|+\left|\int_0^1 x\right| x|d x| \)

    \( =\left|\int_{-1}^0 x(-x) d x\right|+\left|\int_0^1 x \cdot x d x\right|=\left|\int_{-1}^0-x^2 d x\right|+\left|\int_0^1 x^2 d x\right| \)

    \( =\left[\frac{-x^3}{3}\right]_{-1}^0+\left[\frac{x^3}{3}\right]_0^1=\frac{2}{3}\)

  • Question 4
    1 / -0

    If \(x^{2}<4\) then the value of \(x\) is:

    Solution

    Given,

    \(x^{2}<4\)

    \(\Rightarrow x^{2}-4<0\)

    \(\Rightarrow(x-2) \times(x+2)<0\)

    \(\Rightarrow-2

    \(\Rightarrow x \in(-2,2)\)

  • Question 5
    1 / -0

    Find the value of \(k\) for which the distance of point \((k+2,2 k+3)\) is \(\frac{4}{ \sqrt{10}}\) from the line \(x+\) \(3 y=7 ?\)

    Solution

    Given,

    The distance of the point \((k+2,2 k+3)\) from the line \(x+3 y=7\) is \(\frac{4}{\sqrt{10}}\).

    Let \(P=(k+2,2 k+3)\)

    \(\Rightarrow x_{1}=k+2\) and \(y_{1}=2 k+3\)

    Here, \(a=1\) and \(b=3\)

    Now substitute \(x_{1}=k+2\) and \(y_{1}=2 k+3\) in the equation \(x+3 y-7=0\) we get,

    \(\Rightarrow\left|x_{1}+3 \cdot y_{1}-7\right|=|7 k+4|\)

    \(\Rightarrow \sqrt{a^{2}+b^{2}}\)

    \(=\sqrt{1^{2}+3^{2}}\)

    \(=\sqrt{10}\)

    As we know that, the perpendicular distance \(d\) from \(P\left(x_{1}, y_{1}\right)\) to the line \(a x+b y+c\) \(=0\) is given by:

    \(d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|\)

    \( d=\left|\frac{7 k+4}{\sqrt{1^{2}+3^{2}}}\right|\)

    \(=\frac{4}{\sqrt{10}} \)

    \(\Rightarrow|7 k+4|\)

    \(=4\)

    \(\Rightarrow k=0 \text { or }\frac{-8}{ 7}\)

  • Question 6
    1 / -0

    If ' \(\theta\) ' is an acute angle and \(\operatorname{cosec} \theta=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots\), then the value of \(\tan \theta\):

    Solution

    Given,

    \(\operatorname{cosec} \theta=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots\)

    Let \(x=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots\)

    On squaring both sides we get,

    \(x^{2}=2 \sqrt{2 \sqrt{2}} \ldots \ldots \ldots\)

    \(\Rightarrow x^{2}=2 x \quad(\because x=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots .) \)

    \(\Rightarrow x^{2}-2 x=0\)

    \(\Rightarrow x(x-2)=0 \)

    \(\Rightarrow x=2 \text { OR } x=0 \)

    \(\text { If } x=2 \text { : } \)

    \(\operatorname{cosec} \theta=2\)

    \(\Rightarrow \theta=30^{\circ}\)

    \(\therefore \tan \theta=\tan 30^{\circ}=\frac{1}{\sqrt{3}}\)

  • Question 7
    1 / -0

    Let \(f(x)\) be a differentiable function defined on \([0,2]\), such that \(f^{\prime}(x)=f^{\prime}(2-x)\), for all \(x \in(0,2), f(0)=1\) and \(f(2)=e^2\). Then, the value of \(\int_0^2 f(x) d x\) is:

    Solution

    Given, \(\mathrm{f}(0)=1 \ldots\) (i)

    \( f(2)=e^2 \ldots \text { (ii) } \\\)

    \( f^{\prime}(x)=f^{\prime}(2-x)\)

    Integrating w.r.t. \(\mathrm{x}\),

    \(f(x)=-f(2-x)+C\)

    Put \(\mathrm{x}=0\)

    \(f(0)=-f(2)+C\)

    \(\Rightarrow 1=-e^2+C\) [from Eqs. (i) and (ii)]

    \( \Rightarrow \mathrm{C}=1+\mathrm{e}^2 \\\)

    \( \therefore \mathrm{f}(\mathrm{x})=-\mathrm{f}(2-\mathrm{x})+1+\mathrm{e}^2 \\\)

    \( \text { or } \mathrm{f}(\mathrm{x})+\mathrm{f}(2-\mathrm{x})=1+\mathrm{e}^2 \ldots\)

    Let \(I=\int_0^2 f(x) d x \ldots\) (iv)

    Also, \(I=\int_0^2 f(2-x) d x \ldots(v)\)

    Now, adding Eqs. (iv) and (v),

    \( 2 I=\int_0^2[f(x)+f(2-x)] d x \\\)

    \( 2 I=\int_0^2\left(1+\mathrm{e}^2\right) d x \text { [from Eq. (iii)] } \\\)

    \( 2 I=2\left(1+\mathrm{e}^2\right) \\\)

    \( \therefore I=\left(1+\mathrm{e}^2\right)\)

  • Question 8
    1 / -0

    If \({ }^{10} {P}_{{r}}=5040\), then \({r}=?\)

    Solution

    We know that:

    \({ }^{{n}} {P}_{{r}}=\frac{{n} !}{({n}-{r}) !}={n} \times({n}-1) \times \ldots. \times({n}-{r}+1)\)

    Given that:

    \({ }^{10} {P}_{{r}}=5040\)

    \(\Rightarrow{ }^{10} {P}_{{r}}=10 \times 504\)

    \(\Rightarrow{ }^{10} {P}_{{r}}=10 \times 9 \times 56\)

    \(\Rightarrow{ }^{10} {P}_{{r}}=10 \times 9 \times 8 \times 7\)

    \(\Rightarrow{ }^{10} {P}_{{r}}=10 \times(10-1) \times(10-2) \times(10-4+1)\)

    On comparing the above expression with \({ }^{{n}} {P}_{{r}}={n} \times({n}-1) \times \ldots \ldots \times({n}-{r}+1)\), we get:

    \(r=4\)

  • Question 9
    1 / -0

    If \(x=\cos \theta+i \sin \theta\), then the value of \(x^{n}+\frac{1}{x^{n}}\) is:

    Solution

    Given: \(x=\cos \theta+i \sin \theta\)

    Then \(x^{n}=(\cos \theta+i \sin \theta)^{n}\)

    \(\Rightarrow x^{n}=(\cos n \theta+i \sin n \theta) \quad \ldots\)(i)

    \(\Rightarrow \frac{1}{x^{n}}=\frac{1}{(\operatorname{cosn} \theta+i \sin n \theta)^{1}}=(\cos n \theta+i \sin n \theta)^{- 1}=\cos n \theta-i \operatorname{sinn} \theta \quad \ldots\)(ii)

    On adding equation (i) and (ii) we get,

    \(\Rightarrow x^{n}+\frac{1}{x^{n}}=\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n \theta=2 \operatorname{cos} n \theta\)

  • Question 10
    1 / -0

    A basket contains \(2\) white, \(3\) red and \(4\) black balls. Two balls are drawn at random. Find the probability of not any ball being drawn is black?

    Solution

    Given:

    A basket contains \(2\) white, \(3\) red and \(4\) black balls, two balls are drawn at random.

    Total number of balls \(=2+3+4=9\)

    We know that:

    Probability \(=\frac{\text { Favorable Outcome }}{\text { Total Outcome }}\)

    \(P(E)=\frac{n(E)}{n(S)}\)

    Let \(S\) be the sample space.

    Let \(E=\) Event of drawing \(2\) balls, none of them is black

    Number of all combinations of \(n\) things, taken \(r\) at a time is given by \({ }^{n} C_{r}=\frac{n !}{(r) !(n-r) !}\)

    Total number of ways of drawing \(2\) balls out of \(9\) balls

    \(n(S)={ }^{9} C_{2}\)

    There are four black balls in the total nine balls. Total number of non-black balls \(=9-4=5\)

    Number of ways of drawing \(2\) balls out of \(5\) balls, if none of them is black

    \(n(E)={ }^{5} C_{2}\)

    \(\Rightarrow P(E)=\frac{n(E)}{n(S)}=\frac{{ }^{5} C_{2}}{{ }^{9} C_{2}}\)

    \(=\frac{\frac{5 !}{2 ! 3 !}}{\frac{9}{2 ! 7 !}}\)

    \(=\frac{\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}}{\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}\)

    \(=\frac{\left\{\frac{(5 \times 4)}{(2 \times 1)}\right\}}{\left\{\frac{(9 \times 8)}{(2 \times 1)}\right\}}\)

    \(=\frac{10}{36}\)

    \(=\frac{5}{18}\)

    \(\therefore\) The probability of not any ball being drawn is black is \(\frac{5}{18}\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now