Self Studies

Mathematics Test - 4

Result Self Studies

Mathematics Test - 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the points on the curve \(y=x^2\) at which the slope of the tangent is equal to the \(y\)-coordinate of the point.

    Solution

    Given: Equation of the curve \(y=x^2 \ldots\)(1)

    Let's find Slope of tangent at any point on curve \((x, y)\)

    \(y=x^2\).......(1)

    Differentiating with respect to \(x\), we get

    \(\Rightarrow \frac{ dy }{ dx }=2 x\)

    According to question, Slope of the tangent \(=y\)-coordinate of the point

    \( \Rightarrow 2 x = y \)

    \(\Rightarrow 2 x = x ^2 \)

    \(\Rightarrow x ^2-2 x =0\)

    \( \Rightarrow x ( x -2)=0 \)

    \( \therefore x =0 \text { or } 2\)

    Put the value of \(x\) inn equation \(1^{\text {st }}\), we get

    \(y=0\)  or \(4\)

    Therefore, the required points are \((0,0)\) and \((2,4)\)

  • Question 2
    1 / -0

    The integral \(\int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x\) is equal to :

    Solution

    \(\begin{aligned} & =\int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \\ & =\int \frac{\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right) \sqrt{2} \sin \left(\frac{\pi}{4}-x\right)}{\left(\frac{2}{\sqrt{3}}\right)\left(\sin \frac{\pi}{3}+\sin 2 x\right)} d x \\ & =\int \frac{\frac{(\sqrt{3}-1)}{\sqrt{2}} \sin \left(\frac{\pi}{4}-x\right)}{\left(\sin \frac{\pi}{3}+\sin 2 x\right)} d x \\ & =\int \frac{\frac{\sqrt{3}-1}{2 \sqrt{2}} \sin \left(\frac{\pi}{4}-x\right)}{\sin \left(\frac{\pi}{6}+x\right) \cos \left(\frac{\pi}{6}-x\right)} d x \\ & =\frac{1}{2} \int \frac{2 \sin \frac{\pi}{12} \sin \left(\frac{\pi}{4}-x\right)}{\sin \left(\frac{\pi}{6}+x\right) \cos \left(\frac{\pi}{6}-x\right)} d x \\ & =\frac{1}{2} \int \frac{\cos \left(\frac{\pi}{6}-x\right)-\cos \left(\frac{\pi}{3}-x\right)}{\sin \left(\frac{\pi}{6}+x\right) \cos \left(\frac{\pi}{6}-x\right)} d x \\ & =\frac{1}{2}\left[\int \operatorname{cosec}\left(\frac{\pi}{6}+x\right) d x-\int \sec \left(\frac{\pi}{6}-x\right) d x\right] \\ & =\frac{1}{2}\left[\ln \left|\tan \left(\frac{\pi}{12}+\frac{x}{2}\right)\right|-\int \operatorname{cosec}\left(\frac{\pi}{3}-x\right) d x\right] \\ & =\frac{1}{2}\left[\ln \left|\tan \left(\frac{\pi}{12}+\frac{x}{2}\right)\right|-\ln \left|\frac{\pi}{6}+\frac{x}{2}\right|\right]+C \\ & =\frac{1}{2} \ln \left|\frac{\tan \left(\frac{\pi}{12}+\frac{x}{2}\right)}{\tan \left(\frac{\pi}{6}+\frac{x}{2}\right)}\right|+C \\ & \end{aligned}\)

  • Question 3
    1 / -0

    If \(A =\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & 2 & -1\end{array}\right]\) and \(B =\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\), find \(( AB )^{T}\).

    Solution

    Given,

    \(A =\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & 2 & -1\end{array}\right]\) and \(B =\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\)

    \(\Rightarrow AB =\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & 2 & -1\end{array}\right] \times\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\)

    \(\Rightarrow AB =\left[\begin{array}{c}1-3+0 \\ 3+6-5\end{array}\right]\)

    \(\Rightarrow AB =\left[\begin{array}{c}-2 \\ 4\end{array}\right]\)

    As we know,

    The new matrix obtained by interchanging the rows and columns of the original matrix is called as the transpose of the matrix. It is denoted by \(A'\) or \(A^T\).

    \(\therefore( AB )^{T}=\left[\begin{array}{ll}-2 & 4\end{array}\right]\)

  • Question 4
    1 / -0

    Evaluate the integral \(\int_{0}^{\frac{\pi}{4}} \sin ^{3} 2 t \cos 2 t ~d t\).

    Solution

    Given, \(\int_{0}^{\frac{\pi}{4}} \sin ^{3} 2 t \cos 2 t d t\)

    Let,

    \(\mathrm{F}(x)=\int \sin ^{3} 2 t \cos 2 t d t\)

    Let \(\sin 2 t=u\)

    Differentiating w.r.t. \(t\)

    \(\frac{d(\sin 2 t)}{d t}=\frac{d u}{d t}\)

    \(2 \cos 2 t=\frac{d u}{d t}\)

    \(d t=\frac{d u}{2 \cos 2 t}\)

    Putting value of \(u\) and \(du\) in our integral

    \(\int \sin ^{3} 2 t \cos 2 t d t =\int u^{3} \cos 2 t \times \frac{d u}{2 \cos 2 t} \)

    \(=\frac{1}{2} \int u^{3} d u \)

    \(=\frac{1}{2} \frac{u^{3+1}}{3+1}=\frac{1}{2} \frac{u^{4}}{4}=\frac{u^{4}}{8}\)

    Putting back \(u=\sin 2 t\)

    \(=\frac{1}{8} \sin ^{4} 2 t\)

    Hence, \(F(t)=\frac{1}{8} \sin ^{4} 2 t\)

    Now,

    \(\int_{0}^{\frac{\pi}{4}} \sin ^{3} 2 t \cos 2 t =F\left(\frac{\pi}{4}\right)-F(0) \)

    \(=\frac{1}{8} \sin ^{4} 2\left(\frac{\pi}{4}\right)-\frac{1}{8} \sin ^{4} 2(0) \)

    \(=\frac{1}{8} \sin ^{4} \frac{\pi}{2}-\frac{1}{8} \sin ^{4}(0) \)

    \(=\frac{1}{8} \times 1^{4}-\frac{1}{8} \times 0^{4} \)

    \(=\frac{1}{8} \times 1-0 \)

    \(=\frac{1}{8}\)

  • Question 5
    1 / -0

    How many two-digit numbers are divisible by 4?

    Solution

    Two digit numbers which are divisible by 4 are 12, 16, 20, ..., 96 forms an AP with first term a = 12, common difference d = 4 and nth term an = 96.

    ⇒ an = a + (n - 1) × d 

    ⇒ 12 + (n - 1) × 4 = 96

    ⇒ n = 22

  • Question 6
    1 / -0

    For any vector \(\alpha\), what is the value of \((\alpha . \hat{i}) \hat{i}+(\alpha . \hat{j}) \hat{j}+(\alpha. \hat{k}) \hat{k}\)

    Solution

    Given:

    \(\alpha\) is any vector

    Let \(\alpha=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\)

    As we know that, if \(\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\) and \(\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\) then

    \(\vec{a} . \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\)

    \((\alpha. \hat{i}) \hat{i}+(\alpha.\hat{j}) \hat{j}+(\alpha . \hat{k}) \hat{k}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\)

    \((\alpha.\hat{i}) \hat{i}+(\alpha. \hat{j}) \hat{j}+(\alpha. \hat{k}) \hat{k}=\alpha\)

  • Question 7
    1 / -0

    If \(x=\tan ^{-1}(\frac{1}{5})\) then \(\sin 2 x\) is equal to?

    Solution

    Given,

    \(x=\tan ^{-1}(\frac{1}{5})\)

    \(\tan x=\frac{1}{5}\)

    As we know that, \(\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}\)

    \(\therefore \sin 2 x=\frac{2 \tan x}{1+\tan ^{2} x}\)

    \(=\frac{2 \times \frac{1}{5}}{1+\left(\frac{1}{5}\right)^{2}} \)

    \(=\frac{\left(\frac{2}{3}\right)}{\frac{s+1}{25}} \)

    \(=\frac{2}{5} \times \frac{25}{26}=\frac{10}{26}\)

    \(=\frac{5}{13}\)

  • Question 8
    1 / -0

    In any discrete series (when all values are not same) if \(x\) represent mean deviation about mean and \(y\) represent standard deviation, then which one of the following is correct?

    Solution

    Given: \(x=\) M.D., \(y=\) S.D

    We know that,

    M.D \(=\frac{4}{5}\) S.D

    Where, M.D is mean deviation and S.D is standard deviation

    \( x =\frac{4}{5} y\)

    \(\therefore x < y\)

  • Question 9
    1 / -0

    A random variable X  takes values 0, 1, 2, 3, x , with probability 

    P(X=x)=k(x+1)15x where P(X = 0) is a constant. Then, P(X = 0) is :

    Solution

    P(x=r)=crn  prqn-r

    P(X=x)=k(x+1)15x

    x=0,1,2,3,...

    x=0p(X=x)=1

    kx=0(x+1)15x=1

    k1+2×15+3×152+....=1

    a+(a+d)r+(a+d)r2+=a1-r+dr(1-r)2

    k11-15+1×151-152=1

    k1-15+151+125-25=1

    k11625=1

    2516k=1

    k=1625

  • Question 10
    1 / -0

    If \({ }^{n} C_{15}={ }^{n} C_{8}\), then find the value of \(n\).

    Solution

    Given that: 

    \({ }^{n} C_{15}={ }^{n} C_{8}\)

    As we know that, 

    If \({ }^{n} C_{x}={ }^{n} C_{y}\), then, 

    \(x+y=n\)

    Therefore, 

    \(n=15+8=23\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now