\( \text { Given, slope }=\frac{x^2-4 x+y+8}{x-2} \\\)
\( \Rightarrow \frac{d y}{d x}=\frac{x^2-4 x+y+8}{x-2}=\frac{(x-2)^2+(y+4)}{(x-2)} \\\)
\( =(x-2)+\frac{y+4}{x-2}\)
Let \((\mathrm{x}-2)=\mathrm{t} \Rightarrow \mathrm{dx}=\mathrm{dt}\)
and \((y+4)=u \Rightarrow d y=d u\)
\(\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dt}}\)
Now, \(\frac{d y}{d x}=(x-2)+\frac{(y+4)}{(x-2)}\)
\(\Rightarrow \frac{\mathrm{du}}{\mathrm{dt}}=\mathrm{t}+\frac{\mathrm{u}}{\mathrm{t}} \Rightarrow \frac{\mathrm{du}}{\mathrm{dt}}-\frac{\mathrm{u}}{\mathrm{t}}=\mathrm{t}\)
Here, integrating factor (IF) \(=1 / \mathrm{t}\)
\(\Rightarrow \mathrm{u} \cdot\left(\frac{1}{\mathrm{t}}\right)=\int \mathrm{t}\left(\frac{1}{\mathrm{t}}\right) \mathrm{d} \mathrm{t} \Rightarrow \mathrm{u} / \mathrm{t}=\mathrm{t}+\mathrm{c}\)
\(\Rightarrow \frac{(\mathrm{y}+4)}{(\mathrm{x}-2)}=(\mathrm{x}-2)+\mathrm{c}\)
\(\because\) It passes through origin [i.e. \((0,0)]\), then
\(\therefore \frac{4}{-2}=-2+\mathrm{c}\)
\(\Rightarrow-2+2=c \Rightarrow c=0\)
Hence, \(\frac{(y+4)}{(x-2)}=(x-2)+0\)
\(\Rightarrow \mathrm{y}+4=(\mathrm{x}-2)^2\)
Clearly, this curve passes through \((5,5)\) as it satisfies the equation.