Self Studies

Mathematics Test - 40

Result Self Studies

Mathematics Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Every integer \(n \geq 1\). \(\frac{d^{n}}{d^{n} x}\left(x e^{2 x}\right)\) is equal to:

    Solution

    Given:

    \(\frac{d^{n}}{d^{n} x}\left(x e^{2 x}\right)\)

    For \(n=1\)

    \(\frac{d}{d x}\left(x e^{2 x}\right)=2 x e^{2 x}+e^{2 x}\)

    \(=(2 x+1) e^{2 x} \)

    \(=2^{n-1}(2 x+n) e^{2 x}\)

    Let \(P(m)\) be true so that:

    \(\frac{d^{m}}{d^{m} x}\left(x e^{2 x}\right)=2^{m-1}(2 x+m) e^{2 x}\)

    For \(P(m+1)=\) We should get \(2^{m}(2 x+m+1) e^{2 x}\)

    \(\frac{d^{m+1}}{d^{m+1} x}\left(x e^{2 x}\right)=\frac{d}{d x}\left(\frac{d^{m}}{d^{m} x}\left(x e^{2 x}\right)\right) \)

    \(=\frac{d}{d x} 2^{m-1}\left[(2 x+m) e^{2 x}\right] \)

    \(=2^{m}(2 x+m) e^{2 x}+e^{2 x} \)

    \(=2^{m}(2 x+m+1) e^{2 x}\)

    So, \(\mathrm{P}(\mathrm{m}+1)\) is also true.

  • Question 2
    1 / -0

    Evaluate: \(\int \frac{\sin x}{(\cos x)^3} d x\)

    Solution

    \(\int \sec ^2 x d x=\tan x+C\)

    \(\int \sec x \tan x d x=\sec x+c\)

    Calculation:

    Let \(I=\int \frac{\sin x}{(\cos x)^3} d x\)

    \(=\int \tan x \sec ^2 x d x\)

    Let \(\tan x=t\)

    \(\Rightarrow \sec ^2 x d x=d t\)

    Therefore, the integral becomes.

    \(=\int \mathrm{t} d \mathrm{t}\)

    \(=\frac{\mathrm{t}^2}{2}+\mathrm{C}\)

    Re-substitute \(t=\tan x\).

    Thus,

    \(=\frac{\tan ^2 x}{2}+C\)

  • Question 3
    1 / -0

    The set of all real \(x\) satisfying the inequality \(\frac{3-|x|}{4-|x|} \geq 0\):

    Solution

    Given, \(\frac{3-|x|}{4-|x|} \geq 0\)

    \(\Rightarrow 3-|x| \leq 0\) and \(4-|x|<0\)

    or \(3-|x| \geq 0\) and \(4-|x|>0\)

    \(\Rightarrow |x| \geq 3\) and \(|x|>4\)

    \(\Rightarrow x \in(-\infty,-4) \cup[-3,3] \cup(4, \infty)\)

  • Question 4
    1 / -0

    If a curve passes through the origin and the slope of the tangent to it at any point \((x, y)\) is \(\frac{x^2-4 x+y+8}{x-2}\), then this curve also passes through the point:

    Solution

    \( \text { Given, slope }=\frac{x^2-4 x+y+8}{x-2} \\\)

    \( \Rightarrow \frac{d y}{d x}=\frac{x^2-4 x+y+8}{x-2}=\frac{(x-2)^2+(y+4)}{(x-2)} \\\)

    \( =(x-2)+\frac{y+4}{x-2}\)

    Let \((\mathrm{x}-2)=\mathrm{t} \Rightarrow \mathrm{dx}=\mathrm{dt}\)

    and \((y+4)=u \Rightarrow d y=d u\)

    \(\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dt}}\)

    Now, \(\frac{d y}{d x}=(x-2)+\frac{(y+4)}{(x-2)}\)

    \(\Rightarrow \frac{\mathrm{du}}{\mathrm{dt}}=\mathrm{t}+\frac{\mathrm{u}}{\mathrm{t}} \Rightarrow \frac{\mathrm{du}}{\mathrm{dt}}-\frac{\mathrm{u}}{\mathrm{t}}=\mathrm{t}\)

    Here, integrating factor (IF) \(=1 / \mathrm{t}\)

    \(\Rightarrow \mathrm{u} \cdot\left(\frac{1}{\mathrm{t}}\right)=\int \mathrm{t}\left(\frac{1}{\mathrm{t}}\right) \mathrm{d} \mathrm{t} \Rightarrow \mathrm{u} / \mathrm{t}=\mathrm{t}+\mathrm{c}\)

    \(\Rightarrow \frac{(\mathrm{y}+4)}{(\mathrm{x}-2)}=(\mathrm{x}-2)+\mathrm{c}\)

    \(\because\) It passes through origin [i.e. \((0,0)]\), then

    \(\therefore \frac{4}{-2}=-2+\mathrm{c}\)

    \(\Rightarrow-2+2=c \Rightarrow c=0\)

    Hence, \(\frac{(y+4)}{(x-2)}=(x-2)+0\)

    \(\Rightarrow \mathrm{y}+4=(\mathrm{x}-2)^2\)

    Clearly, this curve passes through \((5,5)\) as it satisfies the equation.

  • Question 5
    1 / -0

    The value of \(\left|\begin{array}{ccc}\sin ^2 x & \cos ^2 x & 1 \\ \cos ^2 x & \sin ^2 x & 1 \\ -10 & 12 & 2\end{array}\right|\) is:

    Solution

    Let \(\triangle=\left|\begin{array}{ccc}\sin ^{2} x & \cos ^{2} x & 1 \\ \cos ^{2} x & \sin ^{2} x & 1 \\ -10 & 12 & 2\end{array}\right|\)

    Applying \(\mathrm{C_{1} \rightarrow C_{1}+C_{2}}\), we get:

    \(\triangle=\left|\begin{array}{ccc}\sin^2x +\cos^2x & \cos ^{2} x & 1 \\ \cos^2x+\sin^2x & \sin ^{2} x & 1 \\ -10+12 & 12 & 2\end{array}\right| \)

    \(\triangle=\left|\begin{array}{ccc}1 & \cos ^{2} x & 1 \\ 1 & \sin ^{2} x & 1 \\ 2 & 12 & 2\end{array}\right| \quad\left(\because \sin ^{2} x+\cos ^{2} x=1\right)\)

    As we know, if two rows or two columns of a determinant are identical the value of the determinant is zero.

    Here \(\mathrm{C}_{1}\) and \(\mathrm{C}_{3}\) are identical.

    So, \(\triangle=0\)

  • Question 6
    1 / -0

    An iso-profit line represents ______________.

    Solution

    The graph of the profit function is called an iso profit line. It is called this because iso means same or equal and the profit anywhere on the line is the same.

    So, an iso-profit lines represents an infinite number of solutions all of which yield the same profit.

  • Question 7
    1 / -0

    \(\sin \theta+\sin 3 \theta+\sin 5 \theta+\operatorname{sin} 7 \theta\) is equal to:

    Solution

    Given,

    \(\sin \theta+\sin 3 \theta+\sin 5 \theta+\operatorname{sin} 7 \theta\)

    \(=(\sin 3 \theta+\sin \theta)+(\sin 7 \theta+\sin 5 \theta)\)

    \(=2 \sin \left(\frac{3 \theta+\theta}{2}\right) \cos \left(\frac{3 \theta-\theta}{2}\right)+2 \sin \left(\frac{7 \theta+5 \theta}{2}\right) \cos \left(\frac{7 \theta-5 \theta}{2}\right)\)\(\quad (\because\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right))\)

    \(=(2 \sin 2 \theta \cos \theta)+(2 \sin 6 \theta \cos \theta)\)

    \(=2 \cos \theta(\sin 2 \theta+\sin 6 \theta)\)

    \(=2 \cos \theta(\sin 6 \theta+\sin 2 \theta)\)

    \(=2 \cos \theta \times 2 \sin \left(\frac{6 \theta+2 \theta}{2}\right) \cos \left(\frac{6 \theta-2 \theta}{2}\right)\)\(\quad (\because\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right))\)

    \(=2 \cos \theta \times 2 \sin 4 \theta \cos 2 \theta\)

    \(=4 \cos \theta \cos 2 \theta \sin 4 \theta\)

    \(\therefore\) \(\sin \theta+\sin 3 \theta+\sin 5 \theta+\operatorname{sin} 7 \theta\) \(=4 \cos \theta \cos 2 \theta \sin 4 \theta\)

  • Question 8
    1 / -0

    A man speaks the truth 2 out of 3 times. He picks one of the natural numbers in the set \(S=\{1,2,3,4,5,6,7\}\) and reports that it is even. The probability that it is actually even is:

    Solution

    Given, a man speaks truth 2 out of 3 times. He picks one of the natural numbers in the set \(S=\{1,2,3,4,5,6,7\}\) and reports that it is even.

    \({E}_{1}=\) the event of an even number is picked.

    \(E_{2}=\) the event of an odd number is picked.

    \(\mathrm{E}=\) the event a man reports that it is even

    A man speaks truth \(2\) out of \(3\) times.

    To find: The probability that it is actually even i.e. \(P\left(E_{1} \mid E\right)\)

    \(\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{\mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{E}_{2}\right)}\)

    \(\Rightarrow \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{\left(\frac{2}{3}\right) \cdot\left(\frac{3}{7}\right)}{\left(\frac{2}{3}\right) \cdot\left(\frac{3}{7}\right)+\left(\frac{1}{3}\right) \cdot\left(\frac{4}{7}\right)}\)

    \(\Rightarrow \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{6}{10}\)

    \(\Rightarrow \Rightarrow\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{3}{5}\)

    Thus, a man speaks truth 2 out of 3 times. He picks one of the natural numbers in the set \(S=\{1,2,3,4,5,6,7\}\) and reports that it is even. The probability that it is actually even is \(\frac{3}{5}\).

  • Question 9
    1 / -0

    If \(\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)\) are in arithmetic progression and \(\tan \left(\frac{\pi}{9}\right), \mathrm{y}, \tan \left(\frac{5 \pi}{18}\right)\) are also in arithmetic progression, then \(|\mathrm{x}-2 \mathrm{y}|\) is equal to:

    Solution

    If \(\tan \left(\frac{\pi}{9}\right), \mathrm{x}, \tan \left(\frac{7 \pi}{18}\right)\) are in AP.

    So, \(x=\frac{1}{2}\left[\tan \frac{\pi}{9}+\tan \left(\frac{7 \pi}{18}\right)\right]\)

    ( \(\because\) if \(a, b, c\) are in \(A P\), so, \(b=\frac{a+c}{2}\) )

    And \(\tan \left(\frac{\pi}{9}\right), \mathrm{y}_1 \tan \left(\frac{5 \pi}{18}\right)\) are in AP.

    Now, \(\mathrm{x}-2 \mathrm{y}=\frac{1}{2}\left[\tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}\right]-\left(\tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}\right)\)

    \(\Rightarrow|x-2 y|=\left|\frac{\cot \frac{\pi}{9}-\tan \frac{\pi}{9}}{2}-\tan \frac{5 \pi}{18}\right| \quad\left\{\begin{array}{c}\because \tan \frac{5 \pi}{18}=\cot \frac{2 \pi}{9} \\ \text { and } \tan \frac{7 \pi}{18}=\cot \frac{\pi}{9}\end{array}\right\}\)

    \(=\left|\cot \frac{2 \pi}{9}-\cot \frac{2 \pi}{9}\right|=0\)

    \(\left[\because \cot 2 \mathrm{~A}=\frac{2 \cot ^2 \mathrm{~A}^{-1}}{2 \cot \mathrm{A}}\right]\)

  • Question 10
    1 / -0

    \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\left[1-\tan \left(\frac{x}{2}\right)\right][1-\sin x]}{\left[1+\tan \left(\frac{x}{2}\right)\right][\pi-2 x]^3}\) is:

    Solution

    \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan \left(\frac{\pi}{4}-\frac{x}{2}\right) \cdot(1-\sin x)}{(\pi-2 x)^3}\)

    Let \(x=\frac{\pi}{2}+y ; y \rightarrow 0\)

    \(=\lim _{y \rightarrow 0} \frac{\tan \left(-\frac{y}{2}\right) \cdot(1-\cos y)}{(-2 y)^3} \\\)

    \( =\lim _{y \rightarrow 0} \frac{-\tan \frac{y}{2} 2 \sin ^2 \frac{y}{2}}{(-8) \cdot \frac{y^3}{8} \cdot 8}\left[\because 1-\cos \theta=2 \sin ^2 \frac{\theta}{2}\right] \\\)

    \( =\lim _{y \rightarrow 0} \frac{1}{32} \frac{\tan \frac{y}{2}}{\left(\frac{y}{2}\right)} \cdot\left[\frac{\sin y / 2}{y / 2}\right]^2=\frac{1}{32}\left[\because \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta}=1\right]\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now