Self Studies

Mathematics Test - 41

Result Self Studies

Mathematics Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What is the value of \(\sin \left(-1125^{\circ}\right)\)?

    Solution

    Given,

    \(\sin \left(-1125^{\circ}\right)\)

    \(=-\sin \left(1125^{\circ}\right)\) \(\quad\quad (\because\) \(\sin (-x)=-\sin x)\)

    \(=-\sin \left(360^{\circ} \times 3+45^{\circ}\right)\)\(\quad\quad(\because\) \(\sin (2 n \pi+x)=\sin x)\)

    \(=-\sin 45^{\circ}\)

    \(=\frac{-1}{\sqrt{2}}\)

    \(\therefore\) \(\sin \left(-1125^{\circ}\right)\) \(=\frac{-1}{\sqrt{2}}\).

  • Question 2
    1 / -0

    A Cartesian product \(A \times B\) consists of 6 elements. If three of these are \((2,4),(4,6)\) and (5, 6), find the Cartesian set \({B} \times {A}\).

    Solution

    Given:

    \((2,4),(4,6)\) and \((5,6)\) are three elements in \(A \times B\).

    Also, \(A \times B\) has 6 elements.

    As we know that,

    \(n(A \times B)=n(A) \times n(B)\)

    \(\Rightarrow {n}({A} \times {B})=6\)

    \(=3 \times 2\)

    By the definition of Cartesian Product,

    \(A \times B=\{(a, b): a \in A\) and \(b \in B)\}\)

    \(\Rightarrow {n}({A})=3\) and \({n}({B})=2\)

    Thus, the elements of set \({A}\) is \(\{2,4,5\}\) and set \({B}\) is \(\{4,6\}\).

    Now,

    \(B \times A=\{4,6\} \times\{2,4,5\}\)

    \(=\{(4,2),(4,4),(4,5),(6,2),(6,4),(6,5)\}\)

    Therefore,

    \({B} \times {A}=\{(4,2),(4,4),(4,5),(6,2),(6,4),(6,5)\}\)

  • Question 3
    1 / -0

    The differential form of the equation \(y ^2+( x - b )^2= c\)

    Solution

    Given equation is \(y ^2+( x - b )^2= c\)

    There are two constants \(b\) and \(c\) so differentiate two times

    Differentiating w.r.t \(x\)

    \(2 y \frac{d y}{d x}+2(x-b)=0 \)

    \(y \frac{d y}{d x}=b-x\)

    Differentiating again w.r.t \(x\)

    \(\left(\frac{d y}{d x}\right)^2+y \frac{d^2 y}{d x^2}=-1 \)

    \(y \frac{d^2 y}{d x^2}+\left(\frac{d y}{d x}\right)^2+1=0\)

  • Question 4
    1 / -0

    If the points \((-2, -5), (2, -2)\) and \((8, a)\) are collinear, then the value of \(a\) is:

    Solution

    As we know,

    If three points \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\) and \(\left(x_{3}, y_{3}\right)\) are collinear then the area of the triangle determined by the three points is zero.

    \(\left|\begin{array}{lll} x _{1} & y _{1} & 1 \\ x _{2} & y _{2} & 1 \\ x _{3} & y _{3} & 1\end{array}\right|=0\)

    Given,

    The points \((-2,-5),(2,-2)\) and \((8, a)\) are collinear.

    \(\left|\begin{array}{ccc}-2 & -5 & 1 \\ 2 & -2 & 1 \\ 8 & a & 1\end{array}\right|=0\)

    \(\Rightarrow-2(-2-a)-(-5)(2-8)+1(2 a+16)=0\)

    \(\Rightarrow 4+2 a -30+2 a +16=0\)

    \(\Rightarrow 4 a -10=0\)

    \(\Rightarrow 4 a =10\)

    \(\therefore a =\frac{5}{2}\)

  • Question 5
    1 / -0
    Form the differential equation of \(y=a e^{3 x} \cos (x+b)\) Where \(y^{\prime}=\frac{d y}{d x}\) and \(y^{n}=\frac{d^{2} y}{d x^{2}}\)?
    Solution

    Given,

    \(y=a e^{3 x} \cos (x+b)\)

    There are two constants a and b so differentiate two times Differentiating wr.t \(x\),

    We get,

    \(y^{\prime}=3 a e^{3 x} \cos (x+b)-a e^{3 x} \sin (x+b)\)

    \(\Rightarrow y^{\prime}=3 y-a e^{3 x} \sin (x+b)\)

    \(\Rightarrow a e^{3 x} \sin (x+b)=3 y-y^{\prime}\)

    Differentiating again w.r.t \({x}\),

    We get,

    \( 3 {ae}^{3 x} \sin (x+b)+a e^{3 x} \cos (x+b)=3 y^{\prime}-y^{\prime \prime}\)

    \(\Rightarrow 3\left(3 y-y^{\prime}\right)+y-3 y^{\prime}-y^{n}=0 \)

    \(\Rightarrow 9 y-3 y^{\prime}+y-3 y^{\prime}-y^{n}=0 \)

    \(\Rightarrow y^{\prime \prime}+6 y^{\prime}-10 y=0\)

  • Question 6
    1 / -0

    Let \(A=\{x, y, z\}\) and \(B=\{1,2,3,4,5\}\). What is the number of elements in \(A \times B\)?

    Solution

    Given that:

    \(A=\{x, y, z\}\)

    \(n(A)=3\)

    And,

    \(B=\{1,2,3,4,5\}\)

    \(n(B)=5\)

    We know that:

    If \(n(A)=x\) and \(n(B)=y\), then:

    \(n(A \times B)=n(A) \times n(B)\)

    \(=x y\)

    \(\therefore n(A \times B)=n(A) \times n(B)\)

    \(=3 \times 5\)

    \(=15\)

  • Question 7
    1 / -0

    If the direction cosines of a line are \(\left(\frac{1}{k}, \frac{2}{k},-\frac{2}{k}\right)\), then \(k\) is:

    Solution

    Given that:

    Direction cosines of a line are \(\left(\frac{1}{k}, \frac{2}{k},-\frac{2}{k}\right)\)

    So, \(l=\frac{1}{k}, m=\frac{2}{k}\) and \(n=-\frac{2}{k}\)

    We know that:

    Sum of squares of the direction cosines of a line is equal to unity, i.e.,

    \(l ^{2}+ m ^{2}+ n ^{2}=1\)

    \(\Rightarrow \frac{1}{k^{2}}+\frac{4}{k^{2}}+\frac{4}{k^{2}}=1\)

    \(\Rightarrow \frac{9}{k^{2}}=1\)

    \(\Rightarrow k ^{2}=9\)

    \(\therefore k =\pm 3\)

  • Question 8
    1 / -0

    In a town of 10000 families it was found that 40% family buy newspaper A, 20% buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspaper, then the number of families which buy A only is:

    Solution

    \(n(A)=40 \%\) of \(10000=4000\)

    \(n(B)=20 \%\) of \(10000=2000\)

    \(n(C)=10 \%\) of \(10000=1000\)

    \(n(A \cap B)=5 \%\) of \(10000=500\)

    \(n(B \cap C)=3 \%\) of \(10000=300\)

    \(n(A \cap C)=4 \%\) of \(10000=400\)

    \(n(A \cap B \cap C)=2 \%\) of \(10000=200\)

    \(=n\left[A \cap(B \cup C)^{C}\right]\)

    \(=n(A)-n[A \cap(B \cup C)]\)

    \(=n(A)-[n(A \cap B) \cup n(A \cap C)]\)

    \(=n(A)-[n(A \cap B)+n(A \cap C)-n(A \cap B \cap C)]\)

    \(=4000-[500+400-200]=3300\)

  • Question 9
    1 / -0

    If \(|\vec{a}|=3,|\vec{b}|=4\) and \(|\vec{a}-\vec{b}|=5\), then what is the value of \(|\vec{a}+\vec{b}| ?\)

    Solution

    Given:

    \(|\vec{a}|=3,|\vec{b}|=4\) and \(|\vec{a}-\vec{b}|=5\)

    We know that,

    \(|\vec{a}-\vec{b}|^{2}+|\vec{a}+\vec{b}|^{2}=2 \times\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right)\)

    \(\Rightarrow 5^{2}+|\vec{a}+\vec{b}|^{2}=2 \times\left(3^{2}+4^{2}\right)\)

    \(\Rightarrow|\vec{a}+\vec{b}|^{2}=50-25=25\)

    \(\therefore|\vec{a}+\vec{b}|=5\)

  • Question 10
    1 / -0

    A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is:

    Solution

    Let, \(E_1=\) Event in which spade is missing

    \( P\left(E_1\right)=\frac{1}{4} \ldots( i ) \)

    \(P\left(\overline{E_1}\right)=1-P\left(E_1\right) \)

    \(P\left(\overline{E_1}\right)=\frac{3}{4} \ldots( ii )\)

    \(E =\) Event in which drawn two cards are spade.

    \( P(E)=\frac{\left(\frac{1}{4}\right)\left(\frac{{ }^{12} C_2}{{ }^{51} C_2}\right)+\left(\frac{3}{4}\right)\left(\frac{{ }^{13} C_2}{{ }^{51} C_2}\right)-\left(\frac{3}{4}\right)\left(\frac{{ }^{13} C_2}{{ }^{51} C_2}\right)}{\left(\frac{1}{4}\right)\left(\frac{{ }^{12} C_2}{{ }^{51} C_2}\right)+\left(\frac{3}{4}\right)\left(\frac{{ }^{13} C_2}{{ }^{51} C_2}\right)} \)

    \(P(E)=\frac{\left(\frac{1}{4}\right)\left(\frac{12 \times 11}{51 \times 50}\right)+\left(\frac{3}{4}\right)\left(\frac{13 \times 12}{51 \times 50}\right)-\left(\frac{3}{4}\right)\left(\frac{13 \times 12}{51 \times 50}\right)}{\left(\frac{1}{4}\right)\left(\frac{12 \times 11}{51 \times 50}\right)+\left(\frac{3}{4}\right)\left(\frac{13 \times 12}{51 \times 50}\right)} \)

    \( P(E)=\frac{(12 \times 11)+(3)(13 \times 12)-(3)(13 \times 12)}{(12 \times 11)+(3)(13 \times 12)} \)

    \( P(E)=\frac{11}{50}\)

    Required probability=1-P(E)

    \( =1-\frac{11}{50} =\frac{39}{50}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now