Self Studies

Mathematics Test - 42

Result Self Studies

Mathematics Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the value of \(\underset{{x \rightarrow 1}}{\lim} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}\)

    Solution

    Given that:

    \(\underset{{x \rightarrow 1}}{\lim} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}\)

    On putting the limit in above equation we will get\(\frac{0}{0} \) form.

    Therefore, we can cancel a factor going to zero out of the numerator and denominator.

    We have,

    \(\underset{{ {{x} \rightarrow 1} }}{\lim}\frac{(2 {x}-3)(\sqrt{{x}}-1)}{2 {x}^{2}+{x}-3}\)

    \(=\underset{{{{x} \rightarrow 1}}}{\lim} \frac{(2 {x}-3)(\sqrt{{x}}-1)}{(2 {x}+3)({x}-1)}\)

    \(=\underset{{{{x} \rightarrow 1}}}{\lim} \frac{(2 {x}-3)(\sqrt{{x}}-1)}{(2 {x}+3)(\sqrt{{x}}-1)(\sqrt{{x}}+1)}\)

    Factor \((\sqrt{x}-1)\) becomes zero at \(x\) tends to 1 so, we need to cancel this factor from numerator and denominator.

    \(=\underset{{{x \rightarrow 1}}}{\lim} \frac{(2 x-3)}{(2 x+3)(\sqrt{x}+1)}\)

    \(=\frac{2-3}{(2+3)(\sqrt{1}+1)}\)

    \(=\frac{-1}{10}\)

  • Question 2
    1 / -0

    \(x+i y=\sqrt{\frac{a+i b}{c+i d}}\), then the value of \(x^{2}+y^{2}\) is:

    Solution

    Given \(x+i y=\sqrt{\frac{a+i b}{c+i d}}\quad\quad\)...(1)

    Calculating \(x+i y\)

    Replacing \(i\) by\(-i\).

    \(x-i y=\sqrt{\frac{a-i b}{c-i d}}\quad\quad\)....(2)

    Multiplying (1) and (2).

    \((x-i y)(x+i y)=\sqrt{\frac{a+i b}{c+i d}} \times \sqrt{\frac{a-i b}{c-i d}}\)

    Using \((a-b)(a+b)=a^{2}-b^{2}\)

    \(=(x)^{2}-(i y)^{2}\)

    \(=x^{2}-(i)^{2} y^{2}\)

    \(=x^{2}-(-1) y^{2} \quad \quad\) (As \(\left.i^{2}=-1\right)\)

    \(=x^{2}+y^{2}\)

    \(x^{2}+y^{2}=\sqrt{\frac{a+i b}{c+i d} \times \frac{a-i b}{c-i d}}\)

    \(=\sqrt{\frac{(a+i b)(a-i b)}{(c+i d)(c-i d)}}\)

    \(=\sqrt{\frac{(a)^{2}-(i b)^{2}}{(c)^{2}-(i d)^{2}}}\)

    \(=\sqrt{\frac{a^{2}-i^{2} b^{2}}{c^{2}-i^{2} d^{2}}}\)

    Putting \(i^{2}=-1\)

    \(=\sqrt{\frac{a^{2}-(-1) b^{2}}{c^{2}-(-1) d^{2}}}\)

    \(=\sqrt{\frac{a^{2}+b^{2}}{c+d^{2}}}\)

    Thus, \(x^{2}+y^{2}=\sqrt{\frac{a^{2}+b^{2}}{c^{2}+d^{2}}}\)

  • Question 3
    1 / -0

    Cards numbered from \(107\) to \(1006\) are put in a bag. A card is drawn from it at random. Find the probability that the number on the card is not divisible both by \(11\) and \(37\)?

    Solution

    Given,

    Number between \(107\) to \(1006=900\)

    Number of possible outcomes \(=n(S)=900\)

    Numbers from \(107\) to \(1006\) divisible by \(11\) and \(37\) both \(=\{407,814\}\)

    \(=2\)

    Numbers on cards not divisible by both \(11\) and \(37 \quad n(E)=900-2\)

    \(=898\)

    \(\therefore\) Probability \(=\frac{n(E)(\text { Favourable Events })}{n(S)(\text { Possible outcomes })}\)

    \(=\frac{898}{900}\)

    \(=0.998\)

  • Question 4
    1 / -0

    If \(\int \frac{\cos \theta}{5+7 \sin \theta-2 \cos ^2 \theta} d \theta=\operatorname{Alog}_e|B(\theta)|+C\), where \(C\) is a constant of integration, then \(\frac{B(\theta)}{A}\) can be:

    Solution

    \(\begin{aligned} & \text { Let } \sin \theta=t \Rightarrow \cos \theta d \theta=d t \\ & \int \frac{\cos \theta}{5+7 \sin \theta-2 \cos ^2 \theta} d \theta=\frac{d t}{5+7 t-2+2 t^2} \\ & \Rightarrow \frac{1}{2} \int \frac{d t}{\left(t+\frac{7}{4}\right)^2-\left(\frac{5}{4}\right)^2}=\frac{1}{5} \ln \left|\frac{t+\frac{1}{2}}{t+3}\right|+C \\ & =\frac{1}{5} \ln \left|\frac{2 t+1}{t+3}\right|+C=\frac{1}{5} \ln \left|\frac{2 \sin \theta+1}{\sin \theta+3}\right|+C \\ & \therefore B(\theta)=\frac{2 \sin \theta+1}{2(\sin \theta+3)} \text { and } A=\frac{1}{5} \\ & \Rightarrow \frac{B(\theta)}{A}=\frac{5(2 \sin \theta+1)}{(\sin \theta+3)}\end{aligned}\)

  • Question 5
    1 / -0

    What is the area bounded by the curves \(|y|=1-x^{2}\)?

    Solution

    \(|\mathrm{y}|=\left\{\begin{array}{cc}-y, & y<0 \\ y, & y \geq 0\end{array}\right.\)

    For \(y \geq 0\)

    \(y=1-x^{2}\)

    For \(y<0\)

    \(-y=1-x^{2}\)

    \(\Rightarrow y=x^{2}-1\)

    This can be drawn as:

    So, area under the curve \(=4 \times\) Area under the region OABO (symmetry)

    \(=4 \times \int_{0}^{1}\left(1-\mathrm{x}^{2}\right) \mathrm{dx}\)

    \(=4 \times\left[\mathrm{x}-\frac{\mathrm{x}^{3}}{3}\right]_{0}^{1}\)

    \(=4 \times\left(1-\frac{1}{3}\right)\)

    \(=\frac{8}{3}\) square units

  • Question 6
    1 / -0

    What is the equation of the straight line which joins the intersection of the line \(x-y+4=0\) and \(y-2 x-5\) \(=0\) and the point \((3,2)?\)

    Solution

    Given,

    Lines \(x-y+4=0\)...(i)

    \(y-2 x-5=0\)...(ii)

    The equation of the line with points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\)

    \(\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

    Adding the 2 equation (i) and (ii)

    \(-x-1=0\)

    \(x=-1\)

    Putting it in equation (i) we get,

    \(-1-y+4=0 \)

    \(y=3\)

    Intersection of the lines \((-1,3)\)

    Now the equation of the line to be find out is

    \(\frac{y-3}{x-(-1)}=\frac{2-3}{3-(-1)}\)

    \(4(y-3)=-1(x+1)\)

    \(x+4 y-11=0\)

  • Question 7
    1 / -0

    What is the value of \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)^{2}}{x^{4}}\)?

    Solution

    Given:

    \(\underset{{{x \rightarrow 0} }}{\lim}\frac{(1-\cos 2 x)^{2}}{x^{4}}\)

    We know that:

    \(1-\cos 2 \theta=2 \sin ^{2} \theta\)

    \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\sin x}{x}=1\)

    \(=\underset{{{x \rightarrow 0} }}{\lim} \frac{\left(2 \sin ^{2} x\right)^{2}}{x^{4}} \)

    \(=\underset{{{x \rightarrow 0} }}{\lim} \frac{4 \sin ^{4} x}{x^{4}}\)

    \(=\underset{{{x \rightarrow 0} }}{\lim} 4 \times\left(\frac{\sin x}{x}\right)^{4}\)

    \(=4 \times 1=4\)

  • Question 8
    1 / -0

    Solution

  • Question 9
    1 / -0

    What is the number of ways that 5 boys and 4 girls can be seated in a row, so that, boys and girls sit alternately?

    Solution

    We know that:

    The number of permutations of n objects taken r at a time is given by:

    \({ }^{n} P_{r}=\frac{n !}{(n-r) !}\)

    where,

    n = number of objects

    r = number of positions

    There can be only one arrangement in which boys and girls can sit.

    B - G - B - G - B - G - B - G - B

    But the position of individual boys and girls can be changed.

    So, there are 5 boys and 5 slots for them that means they can be arranged in \({ }^{5} {P}_{5}\) or 5! ways,

    Similarly girls have 4 slots, so they can be arranged in \({ }^{4} {P}_{4}\) or \(4 !\) ways.

    Now, one more thing to consider is that out of \(5 !\) arrangements of boys, with each arrangement girls can be arranged in 4! different positions.

    So, to get the total number of boys and girls arrangements together we would need to multiply the arrangements of both boys and girls.

    So, the desired answer would be \(={ }^{5} {P}_{5} \times{ }^{4} {P}_{4}=5 ! \times 4 !=120 \times 24=2880\) ways.

  • Question 10
    1 / -0

    Which of the following is equal to \(\tan ^{-1}\left(\frac{8 x \sqrt{x}}{1-16 x^{3}}\right)?\)

    Solution

    Given,

    \(\tan ^{-1}\left(\frac{8 x \sqrt{x}}{1-16 x^{3}}\right)\)...(i)

    Rewrite the equation (i) as follows:

    \(\tan ^{-1}\left(\frac{8 x \cdot \sqrt{x}}{1-16 x^{3}}\right)=\tan ^{-1}\left(\frac{2(4 x \sqrt{x})}{1-(4 x \sqrt{x})^{2}}\right)\)

    On comparing equation (i) with \(2 \tan ^{-1} \mathrm{x}=\tan ^{-1}(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}))\) we get,

    \(=2 \tan ^{-1}(4 x \sqrt{x})\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now