Self Studies

Mathematics Test - 43

Result Self Studies

Mathematics Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If |x| = -5 then the value of x lies in the interval:

    Solution

    Given, |x| = -5

    Since |x| is always positive or zero

    So, it can not be negative

    Therefore, given inequality has no solution.

  • Question 2
    1 / -0

    The projection of the vector \(\hat{i}-2 \hat{j}+\hat{k}\) on the vector \(4 \hat{i}-4 \hat{j}+7 \hat{k}\) is:

    Solution

    \(\vec{v}=\hat{i}-2 \hat{j}+\hat{k}\)

    \(\vec{u}=4 \hat{i}-4 \hat{j}+7 \hat{k}\)

    \(\vec{v} \cdot \vec{u}=(\hat{i}-2 \hat{j}+\hat{k}) \cdot(4 \hat{i}-4 \hat{j}+7 \hat{k})\)

    \(\Rightarrow \vec{v} \cdot \vec{u}=4+8+7\)

    \(\overrightarrow{|u|}=\sqrt{4^{2}+(-4)^{2}+7^{2}}=\sqrt{81}=9\)

    \(\therefore\) The projection of the vector \(\hat{i}-2 \hat{j}+\hat{k}\) on the vector \(4 \hat{i}-4 \hat{j}+7 \hat{k}=\frac{19}{9}=2 \frac{1}{9}\)

  • Question 3
    1 / -0

    Value of \(\cos \left(-1230^{\circ}\right) \times \cot \left(-315^{\circ}\right)\) is:

    Solution

    Given,

    \(\cos \left(-1230^{\circ}\right) \times \cot \left(-315^{\circ}\right)\)

    \(\cos \left(-1230^{\circ}\right)=\cos \left(1230^{\circ}\right)\)\(\quad\quad(\because \cos (-\theta)=\cos \theta)\)

    \(=\cos \left(3 \times 360^{\circ}+150\right)\)\(\quad\quad(\because\cot (2 n \pi-\theta)=-\cot (\theta))\)

    \(=\cos \left(150^{\circ}\right)\)

    \(=\cos \left(180^{\circ}-30^{\circ}\right)\)\(=-\cos 30^{\circ} \quad(\because \cos (\pi-\theta)=-\cos (\theta))\)

    \(=\frac{-\sqrt{3}}{2}\)

    Now,

    \(\cot \left(-315^{\circ}\right)=-\cot \left(315^{\circ}\right) \quad(\because \cot (-\theta)=-\cot (\theta))\)

    \(=-\cot \left(360^{\circ}-45^{\circ}\right) \)

    \(=\cot 45^{\circ} \quad(\because \cot (2 n \pi-\theta)=-\cot (\theta))\)

    \(=1\)

    \(\cos \left(-1230^{\circ}\right) \times \cot \left(-315^{\circ}\right)=\frac{-\sqrt{3}}{2}\)

    \(=1 × \frac{-\sqrt{3}}{2}\)

  • Question 4
    1 / -0

    Which of the following statements is correct for the function \(g(\alpha)\) for \(\alpha \in R\), such that \(g(\alpha)=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^\alpha x}{\cos ^\alpha x+\sin ^\alpha x} d x\)

    Solution

    \( g(\alpha)=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^\alpha x}{\cos ^\alpha x+\sin ^\alpha x} d x \ldots \text {.. (i) } \\\)

    \( \text { Applying } \int_a^b f(x) d x=\int_a^b f(a+b-x) d x \\\)

    \( g(\alpha)=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^\alpha(\pi / 2-x)}{\cos ^\alpha\left(\frac{\pi}{2}-x\right)+\sin ^\alpha\left(\frac{\pi}{2}-x\right)} d x \\\)

    \( g(\alpha)=\int_{\pi / 6}^{\pi / 3} \frac{\cos ^\alpha x}{\cos ^\alpha x+\sin ^\alpha x} d x \text {.... (ii) }\)

    Adding Eqs. (i) and (ii),

     

    \(2 g(\alpha)=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^\alpha x+\cos ^\alpha x}{\sin ^\alpha x+\cos ^\alpha x} d x \\\)

    \(\begin{aligned} & 2 g(\alpha)=\int_{\pi / 6}^{\pi / 3} 1 \cdot d x=[x]_{\pi / 6}^{\pi / 3}=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6} \\ & \therefore g(\alpha)=\frac{\pi}{12}\end{aligned}\)

    \(g(\alpha)\) is constant function.

    \(\therefore\) It is even function.

  • Question 5
    1 / -0

    The vectors \(\vec{a}\) and \(\vec{b}\) are not perpendicular and \(\vec{c}\) and \(\vec{d}\) are two vectors satisfying \(\vec{b} \times \vec{c}=\vec{b} \times \vec{d}\) and \(\vec{a} \cdot \vec{d}=0\) Then the vector \(\vec{d}\) is equal to:

    Solution

    Given that \(\vec{a} \cdot \vec{d} \neq 0, \vec{a} \cdot \vec{d}=0\)

    Now, \(\vec{b} \times \vec{c}=\vec{b} \times \vec{d}\)

    \(\Rightarrow \vec{a} \times(\vec{b} \times \vec{c})=\vec{a} \times(\vec{b} \times \vec{d}) \\\)

    \( \Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=(a \cdot \vec{d}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{d} \\\)

    \( \Rightarrow(\vec{a} \cdot \vec{b}) \vec{d}=-(\vec{a} \cdot \vec{c}) \vec{b}+(\vec{a} \vec{b}) \vec{c} \\\)

    \( \vec{d}=\vec{c}-\left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}\)

  • Question 6
    1 / -0

    If the mirror image of the point \((2,4,7)\) in the plane \(3 x-y+4 z=2\) is \((a, b, c)\), then \(2 a+b+2 c\) is equal to:

    Solution

    We know mirror image of point \(\left(\mathrm{x}_1: \mathrm{y}_1, \mathrm{z}_1\right)\) in the plane \(\mathrm{ax}+\mathrm{by}+\mathrm{cz}=\mathrm{d}\)

    \(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}=\frac{-2\left(\mathrm{ax}_1+b y_1+c z_1-d\right)}{a^2+b^2+c^2}\)

    Here given point \((2,4,7)\) and plane \(3 x-y+4 z=2\) then mirror image is

    \( \frac{x-2}{3}=\frac{y-4}{-1}=\frac{z-7}{4}=\frac{-2(6-4+28-2)}{9+1+16} \\\)

    \( \Rightarrow \frac{x-2}{3}=\frac{y-4}{-1}=\frac{z-7}{4}=-\frac{28}{13} \\\)

    \( \therefore x=-\frac{58}{13}=a \\\)

    \( y=\frac{80}{13}=b \\\)

    \( z=-\frac{21}{13}=c \\\)

    \( \therefore 2 a+b+2 c \\\)

    \( =2\left(-\frac{58}{13}\right)+\frac{80}{13}+2\left(-\frac{21}{13}\right) \\\)

    \( =\frac{-116+80-42}{13}=\frac{-78}{13}=-6\)

  • Question 7
    1 / -0

    In how many ways, five boys and five girls can stand in a circle when boys and girls standing one by one?

    Solution

    If we fix a girl, then the rest 4 girls can be arranged in the ways \(=4 !\)

    There is 1 position between each pair of girl, which means only 5 positions are there.

    Ways to arrange 5 boys in those 5 position will be \(=5!\)

    The total number of ways, \(N=5 ! \times 4!\)

    \(N=120 \times 24\)

    \(N=2880\) ways

  • Question 8
    1 / -0

    Let \(f(2)=2\) and \(f(x)=2\). Then, \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\) is given by:

    Solution

    Given here:

    \(f(2)=2\) and \(f(x)=2\).

    Let us check the form by putting \(x = 2\), we get:

    \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\)

    \(=\frac{2(2)-2(2)}{2-2}\)

    \(=\frac{0}{0}\)

    Apply L’ hospital’s rule,

    \(\lim _{x \rightarrow a} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(x)}=\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{f}(\mathrm{x}))}{\frac{d}{d x}(\mathrm{~g}(\mathrm{x}))}=\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\mathrm{f}^{\prime}(x)}{\mathrm{g}^{\prime}(x)}\)

    \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\)

    Differentiating the numerator and the denominator in above, we get:

    \(=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(x f(2)-2 f(x))}{\frac{d}{d x}(x-2)}\)

    \(=\lim _{x \rightarrow 2} \frac{f(2)-2 f^{\prime}(x)}{1}\)

    Now, take limit at x = 2

    \(\lim _{x \rightarrow 2}=f(2)-2 f^{\prime}(2)\)

    \(=2-2(2)\)

    \(=-2\)

  • Question 9
    1 / -0

    The number of generator of a finite cyclic group of order 28 is:

    Solution
    Let a cyclic group G of order 28 generated by an element a, then
    \({o}({a})={o}({G})=28\)
    To determine the number of generator of G evidently,
    \(G=\left\{a, a^{2}, a^{3}, \ldots \ldots ., a^{28}=e\right\}\)
    An element \(a^{m} G\) is also a generator of \(G\) is H.C.F of \(m\) and 28 is 1
    H.C.F of \((1,28)\) is 1 silimarly, \((3,28)(5,28),(9,28)(11,28),(13,28),(15,28),(17,28),(19,28),(23,28),(25,28),(27,28)\)
    Hence \(a, a^{3}, a^{5}, a^{9}, a^{11}, a^{13}, a^{15}, a^{17}, a^{19}, a^{23}, a^{25}, a^{27}\) are the generators of \(G\)
    Therefore, there are 12 generators of \(G\)
  • Question 10
    1 / -0

    \(4^{\text {th }}\) term of a G. \(P\) is 8 and \(10^{\text {th }}\) term is \(27 .\) Then its \(6^{\text {th }}\) term is?

    Solution

    Given,

    \(4^{\text {th }}\) term of a G. P is 8 and \(10^{\text {th }}\) term is \(27\)

    \(n^{\text {th }}\) term of the G.P. is \(T_{n}=a r^{n-1}\)

    \(\therefore \mathrm{T}_{4}=\mathrm{a} \cdot \mathrm{r}^{3}=8 \quad \ldots(1)\)

    \(T_{10}=a r^{9}=27 \quad \ldots(2)\)

    Equation (2) \(\div(1)\), we get

    \(r^{6}=\frac{27}{8}\)

    \(\left(\mathrm{r}^{2}\right)^{3}=\left(\frac{3}{2}\right)^{3}\)

    \(\therefore r^{2}=\frac{3}{2}\)

    \(\mathrm{T}_{6}=a \mathrm{r}^{5}\)

    \(=a r^{3} \cdot r^{2}\)

    \(=8 \times \frac{3}{2}\)

    \(=12\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now