Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    1 / -0

    Find the equation of the line through the point \((-1,5)\) and making an intercept of \(-2\) on the \(y\)-axis?

  • Question 2
    1 / -0

    Find the mean deviation for the given data is p, 6, 6, 7, 8, 11, 15, 16, if value of mean of the data is 3 times of the ‘p’.

  • Question 3
    1 / -0

    Let \(f: R \rightarrow R\) be defined as \(f(x)=e^{-x} \sin x\). If \(F:[0,1] \rightarrow R\) is a differentiable function, such that \(F(x)=\int_0^x f(t) d t\), then the value of \(\int_0^1\left[F^{\prime}(x)+f(x)\right] e^x d x\) lies in the interval:

  • Question 4
    1 / -0

    If \(5 \times{ }^{{n}} {P}_{4}=7 \times{ }^{({n}-1)} {P}_{4}\), then find the value of \({n}\).

  • Question 5
    1 / -0

    The equation \(\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}\) is satisfied by:

  • Question 6
    1 / -0

    \(\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x\) is equal to:

  • Question 7
    1 / -0

    Let \(\mathrm{A}\) and \(\mathrm{B}\) be two events such that \(\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{2}{5}, \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{1}{7}\) and \(\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{9} \cdot\) Consider

    (S1) \(\mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}\right)=\frac{5}{6}\),

    (S2) \(\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\frac{1}{18}\)

    Then

  • Question 8
    1 / -0

    If \(p\) is a natural number, then prove that \(p^{n+1}+(p+1) 2^{n-1}\) is divisible by \(p^{2}+p+1\) for every ________ \(n\).

  • Question 9
    1 / -0

    If \(f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _e(123)}{x \log _e(1234)-\left(\tan 1^{\circ}\right)}, x>0\), then the least value of \(\mathrm{f}(\mathrm{f}(\mathrm{x}))+\mathrm{f}\left(\mathrm{f}\left(\frac{4}{\mathrm{x}}\right)\right)\) is:

  • Question 10
    1 / -0

    The equation of tangents to the curve \(y\left(1+x^{2}\right)=2-x\), where it crosses \(x\)-axis is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now