Self Studies

Mathematics Test - 45

Result Self Studies

Mathematics Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A manufacturer produces nuts and bolts. It takes 1 hour of work on machine \(A\) and 3 hours on machine \(B\) to produce a package of nuts. It takes 3 hours on machine \(A\) and 1 hour on machine \(B\) to produce a package of bolts. He earns a profit of Rs. \(17.50\) per package on nuts and Rs 7 per package of bolts. How many packages of each should be produced each day so as to maximize his profits if he operate his machines for at the most 12 hours a day?

    Solution

    Let x package nuts and y package bolts are produced.

    Let \(\mathrm{z}\) be the profit function, which we have to maximize.

    Here, \(\mathrm{z}=17.50 \mathrm{x}+7 \mathrm{y} \ldots . .(1)\) is objective function.

    And constraints are,

    \(x+3 y \leq 12 \ldots .(2)\)

    \(3 x+y \leq 12 \ldots .(3)\)

    \(x \geq 0 \ldots(4)\)

    \(y \geq 0 \ldots(5)\)

    On plotting graph of above constraints or inequalities (2),(3),(4) and (5) we get shaded region as feasible region having corner points A, O, B and C.

    For coordinate of 'C' two equations,

    \(x+3 y=12 \ldots(6)\)

    \(3 x+y=12 \ldots .(7)\)

    On solving we get, \(x=3\) and \(y=3\)

    So coordinate of \(\mathrm{C}\) are \((3,3)\)

    Now value of \(z\) is evaluated at corner point as shown in the graph.

    At point 'O' (0, 0),

    The value of \(z\) \(= 17.50 \times 0 + 7 \times 0 =0\)

    At point 'A' (0, 4),

    The value of \(z\) \(= 17.50 \times 0 + 7 \times 4 =28\)

    At point 'B' (4, 0),

    The value of \(z\) \(= 17.50 \times 4 + 7 \times 0 =70\)

    At point 'C' (3, 3),

    The value of \(z\) \(= 17.50 \times 3 + 7 \times 3 =73.5\)

    \(z\), is maximum at C. So \(x=3,y=3\)

    Therefore, maximum profit is Rs. \(73.5\) when 3 package nuts and 3 package bolt are produced.

  • Question 2
    1 / -0

    The value of \(\left|\begin{array}{ccc}\sec ^{2} x & \tan ^{2} x & 1 \\ 2 & 1 & 1 \\ 10 & 8 & 2\end{array}\right|\):

    Solution

    Let \(\Delta=\left|\begin{array}{ccc}\sec ^{2} x & \tan ^{2} x & 1 \\ 2 & 1 & 1 \\ 10 & 8 & 2\end{array}\right|\)

    Apply \({C}_{1} \rightarrow {C}_{1}-{C}_{2}\)

    \(\Delta=\left|\begin{array}{ccc}\sec ^{2} x-\tan ^{2} x & \tan ^{2} x & 1 \\ 2-1 & 1 & 1 \\ 10-8 & 8 & 2\end{array}\right|\)

    \(\Delta=\left|\begin{array}{ccc}1 & \tan ^{2} x & 1 \\ 1 & 1 & 1 \\ 2 & 8 & 2\end{array}\right| \;\left(\because \sec ^{2} x-\tan ^{2} x=1\right)\)

    As we know,

    If two rows or two columns of a determinant are identical the value of the determinant is zero.

    Here \({C}_{1}\) and \({C}_{3}\) are identical.

    So, \(\Delta=0\)

  • Question 3
    1 / -0

    The probability of success of three students \(X, Y\) and \(Z\) in the one examination are \(\frac{1}{5}, \frac{1}{4}\) and \(\frac{1}{3}\) respectively. Find the probability of success of at least two.

    Solution

    Let, Probability of \(X=\) \(P(X)=\frac{1}{5}\)

    Probability of \(Y=P(Y)=\frac{1}{4}\)

    Probability of \(Z=P(Z)=\frac{1}{3}\)

    The probability of success of at least two

    \(=[P(A) P(B)\{1-P(C)\}]+[\{1-P(A)\} P(B) P(C)]+[P(A) P(C)\{1-P(B)\}]+[P(A) P(B) P(C)]\)

    \(=\left[\frac{1}{4} \times \frac{1}{3} \times \frac{4}{5}\right]+\left[\frac{3}{4} \times \frac{1}{3} \times \frac{1}{5}\right]+\left[\frac{2}{3} \times \frac{1}{4} \times \frac{1}{5}\right]+\left[\frac{1}{4} \times \frac{1}{3} \times \frac{1}{5}\right]\)

    \(=\frac{4}{60}+\frac{3}{60}+\frac{2}{60}+\frac{1}{60}\)

    \(=\frac{10}{60}\)

    \(=\frac{1}{6}\)

  • Question 4
    1 / -0

    Let \(a_1, a_2, a_3, \ldots, a_n\) be \(n\) positive consecutive terms of an arithmetic progression. If \(d>0\) is its common difference, then :

    \(\lim _{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots \ldots .+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}\right) \text { is }\)

    Solution

    \(\begin{aligned} & \operatorname{Lt}_{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{\sqrt{a_1}-\sqrt{a_2}}{a_1-a_2}+\frac{\sqrt{a_2}-\sqrt{a_3}}{a_2-a_3}+\ldots . .+\frac{\sqrt{a_{n-1}}-\sqrt{a_n}}{a_{n-1}-a_n}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{\sqrt{a_1}-\sqrt{a_2}+\sqrt{a_2}+\sqrt{a_3}+\ldots \ldots+\sqrt{a_{n-1}}-\sqrt{a_n}}{-d}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{\sqrt{a_n}-\sqrt{a_1}}{d}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{\sqrt{a_1+(n-1) d}-\sqrt{a_1}}{\sqrt{d}}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \frac{1}{\sqrt{d}}\left(\sqrt{\frac{a_1}{n}+d-\frac{d}{n}-\frac{\sqrt{a_1}}{n}}\right) \\ & =1\end{aligned}\)

  • Question 5
    1 / -0

    The domain of the function \(\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^2-1}\right)}{\pi}\right)\) is :

    Solution

    \( -1 \leq \frac{2 \sin ^{-1}\left(\frac{1}{4 x^2-1}\right)}{\pi} \leq 1 \\\)

    \( \Rightarrow-\frac{\pi}{2} \leq \sin ^{-1}\left(\frac{1}{4 x^2-1}\right) \leq \frac{\pi}{2} \\\)

    \( \Rightarrow-1 \leq \frac{1}{4 x^2-1} \leq 1 \\\)

    \( \therefore \frac{1}{4 x^2-1}+1 \geq 0 \\\)

    \( \Rightarrow \frac{1+4 x^2-1}{4 x^2-1} \geq 0 \\\)

    \( \Rightarrow \frac{4 x^2}{4 x^2-1} \geq 0 \\\)

    \( \Rightarrow \frac{4 x^2}{(2 x+1)(2 x-1)} \geq 0 \ldots \ldots ;(1) \\\)

    \( \therefore x \in\left(-\alpha,-\frac{1}{2}\right) \cup\{0\} \cup\left(\frac{1}{2}, \alpha\right) \\\)

    \( \text { And } \frac{1}{4 x^2-1}-1 \leq 0 \\\)

    \( \Rightarrow \frac{1-4 x^2+1}{4 x^2-1} \leq 0 \\\)

    \( \Rightarrow \frac{2-4 x^2}{4 x^2-1} \leq 0 \\\)

    \( \Rightarrow \frac{2 x^2-1}{4 x^2-1} \geq 0 \\\)

    \( \Rightarrow \frac{(\sqrt{2} x+1)(\sqrt{2} x-1)}{(2 x+1)(2 x-1)} \geq 0 \\\)

    \( x \in\left(-\alpha,-\frac{1}{\sqrt{2}}\right) \cup\left(-\frac{1}{2} ; \frac{1}{2}\right) \cup\left(\frac{1}{\sqrt{2}}, \alpha\right)\)

    From (3) and (4), we get

    \(\therefore \mathrm{x} \in\left[-\alpha,-\frac{1}{\sqrt{2}}\right) \cup\left[\frac{1}{\sqrt{2}}, \alpha\right) \cup\{0\}\)

  • Question 6
    1 / -0
    Find the value of \(y\left(\frac{1}{2}\right)\) for the differential equation \(d y=x \sec \frac{y}{x} d x+\frac{y}{x} d x\) with initial condition \(y(1)=\frac{\pi}{2} ?\)
    Solution

    Given,

    \(d y=x \sec \frac{y}{x} d x+\frac{y}{x} d x\)

    \(\frac{d y}{d x}=x \sec \frac{y}{x}+\frac{y}{x}\)

    Now,

    By putting \(y=v x\), and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\)

    \(v+x \frac{d v}{d x}=x \sec v+v\)

    \(\Rightarrow \frac{d v}{d x}=\sec v\)

    \(\Rightarrow \cos v d v=d x\)

    By integrating both sides

    We get,

    \(\int \cos v d v=\int d x \sin v=x+c\)

    Put \(v=\frac{y}{x}\) in the above equation we get,

    sin \(\frac{y}{x}=x+c\)

    Put \(y(1)=\frac{\pi}{2}\) in the above equation we get,

    \(c=0\)

    \(y=x \sin ^{-1} x\)

    Put \(x=\frac{1}{2}\) in the above equation we get,

    \(y=\frac{1}{2} \sin ^{-1} \frac{1}{2}\)

    \(\Rightarrow y=\frac{\pi}{12}\)

  • Question 7
    1 / -0

    What is the value of \(\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x}\)?

    Solution

    Given here:

    \(\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x}\)

    On substituting the limit value in the given function, we get:

    \(\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x}\)

    \(=\frac{\sqrt{(4+0)}-2}{3(0)}\)

    \(=\frac{0}{0}\)

    Conjugate of \(\sqrt{4+x}-2\) is \(\sqrt{4+x}+2\)

    Multiply and divide by \(\sqrt{4+x}+2\) in the given expression, we get:

    \(\therefore \lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{3 x} \times \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}\)

    \(=\lim _{x \rightarrow 0} \frac{4+x-4}{3 x \sqrt{4+x}+2} \quad\left(\because(a+b)(a-b)=\left(a^{2}-b^{2}\right)\right)\)

    \(= \lim _{x \rightarrow 0} \frac{x}{3 x(\sqrt{4+x}+2)}\)

    \(=\lim _{x \rightarrow 0} \frac{1}{3(\sqrt{4+x}+2)}\)

    Now, putting the value of x in the limit, we get:

    \(=\frac{1}{3(2+2)}\)

    \(=\frac{1}{12}\)

  • Question 8
    1 / -0
    A subset \({H}\) of a group \(({G}, *)\) is a group if:
    Solution

    A non-empty subset \({H}\) of a group \(({G}, *)\) is a group of \({G}\) iff,

    \(\Rightarrow \mathbf{a}, \mathbf{b} \in \mathbf{H} \Rightarrow \mathbf{a} * \mathbf{b} \in \mathbf{H}\)

    \(\Rightarrow {a} \in {H} \Rightarrow \frac{1}{ {a}} \in {H} \Rightarrow {a}^{-1}=\frac{1 }{{a}}\)

  • Question 9
    1 / -0

    Consider a Poisson distribution for the tossing of a biased coin. The mean for this distribution is \(\mu\). The standard deviation for this distribution is given by ______.

    Solution

    Poisson distribution formula,

    \(P(x)=\frac{e^{-\lambda}\lambda^{x}}{x !}\)

    where \(\lambda=\) mean value of occurrence within an interval \(P ( x )=\) probability of \(x\) occurrence within an interval For Poisson Distribution we have

    Mean \(=\) Variance \(=\) (Standard Deviation)\(^{2}\)

    \(\therefore\) Standard Deviation \(=\sqrt{\text { Mean }}=\sqrt{\mu}\)

  • Question 10
    1 / -0
    The distance between the parallel planes \(3 x+y+3 z=8\) and \(9 x+3 y+9 z=15\) is:
    Solution

    Given,

    \(3 x+y+3 z=8\) and \(9 x+3 y+9 z=15\)

    Now,

    Divide \(9 x+3 y+9 z=15\) by \(3\)

    We get,

    \(3 x+y+3 z=5\)

    Now,

    We know that,

    Distance between two parallel plane \(a x+b y+c z+d_{1}=0\) and \(a x+b y+c z+d_{2}=0\) is \(\left|\frac{{d}_{1}-{d}_{2}}{\sqrt{{a}^{2}+{b}^{2}+{c}^{2}}}\right|\)

    So,

    Distance between \(3 x+y+3 z=8\) and \(3 x+y+3 z=5\)

    \(=\left|\frac{8-5}{\sqrt{3^{2}+1^{2}+3^{2}}}\right| \)

    \(=\frac{3}{\sqrt{19}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now