Self Studies

Mathematics Test - 46

Result Self Studies

Mathematics Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Evaluate: \(\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|\)

    Solution

    We have,

    \(\Delta=\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|\)

    Applying \(R_{1} \rightarrow c R_{1}\), we have:

    \(\Delta=\frac{1}{c}\left|\begin{array}{ccc} 0 & a c & -b c \\ -a & 0 & -c \\ b & c & 0\end{array}\right|\)

    Applying \(R_{1} \rightarrow R_{1}-b R_{2}\), we have,

    \(\Delta=\frac{1}{c}\left|\begin{array}{ccc}a b & a c & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right|\)

    \(=\frac{a}{c}\left|\begin{array}{ccc}b & c & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right|\)

    Here, the two rows \(R_{1}\) and \(R_{3}\) are identical.

    \(\therefore \Delta=0\)

  • Question 2
    1 / -0

    The solution of the differential equation \(\frac{d y}{d x}=\sec \left(\frac{y}{x}\right)+\frac{y}{x}\) is:

    Solution

    \(\frac{d y}{d x}=\sec \left(\frac{y}{x}\right)+\frac{y}{x}\)

    Let \(\frac{ y }{ x }= t\)

    \(\Rightarrow y = xt\)

    Differentiating with respect to \(x\), we get

    \(\Rightarrow \frac{ dy }{ dx }= x \frac{ dt }{ dx }+ t\)

    Now,

    \( x \frac{ dt }{ dx }+ t =\sec t + t\)

    \( \Rightarrow x \frac{ dt }{ dx }=\sec t \)

    \( \Rightarrow \frac{ dt }{\sec t }=\frac{ dx }{ x }\)

    Integrating both sides, we get

    \( \Rightarrow \int \frac{d t}{\sec t}=\int \frac{d x}{x} \)

    \(\Rightarrow \int \cos t d t=\int \frac{d x}{x} \)

    \(\Rightarrow \sin t=\log x+\log c \)

    \( \Rightarrow \sin t=\log (c x) \quad(\because \log m+\log n=\log (m n))\)

    \(\therefore \sin \left(\frac{y}{x}\right)=\log (c x)\)

  • Question 3
    1 / -0

    Jobs arrive at a facility at an average rate of \(5\) in an \(8\) hour shift. The arrival of the jobs follows Poisson distribution. The average service time of a job on the facility is \(40\) minutes. The service time follows exponential distribution. Idle time (in hours) at the facility per shift will be _______.

    Solution

    Given:

    Arrival rate \((\lambda)=\frac{5}{8} \frac{\text { Jobs }}{\text { Hour }}\)

    Service time for one job is \(40\) min

    Therefore, Service rate \((\mu)=\frac{3}{2} \frac{\text { Jobs }}{\text { Hour }}\)

    Utilization factor \(\rho=\frac{\lambda}{\mu}\)

    Idle time \(=1-\rho\)

    \(\lambda=\frac{5}{8} \frac{\text { Jobs }}{\text { Hour }}\)

    \(\mu=\frac{3}{2} \frac{\text { Jobs }}{\text { Hour }}\)

    \(\rho=\frac{\lambda}{\mu}=\frac{\frac{5}{8}}{\frac{3}{2}}=\frac{5}{12}\)

    Idle time \(=1-\rho\)

    \(=1-\frac{5}{12}\)

    \(=\frac{7}{12}\) hour

    Therefore, Idle time for \(8\) hour shift\(=\frac{7}{12} \times 8\)

    \(=\frac{14}{3}\)hours.

  • Question 4
    1 / -0

    Given Data set is \(1, 0, 2, 3, 1, 1, 15, 1, 3\).

    Find the value of Variance and Standard mean deviation for the given data set?

    Solution

    Mean

    \(\bar{x}=\frac{\sum x}{n}\)

    \({x}=\) Observations given, \({n}=\) Total number of observations

    Mean Deviation from Mean \(=\frac{\sum|x-\bar{x}|}{n}\)

    Mean Deviation from Median \(=\frac{\sum|x-M|}{n}\)

    Here,

    \(\sum\) represents the summation

    \(x=\) Observations given

    \(\bar{x}=\) Mean

    \(n =\) The number of observations

    \(M =\) Median

    Variance \(\sigma^{2}=\frac{\sum(x-\bar{x})^{2}}{n}\) \(x =\) Observations given, \(\bar{x}=\) Mean, \(n =\) Total number of observations
    Standard Deviation \(S=\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}\) \(x =\) Observations given, \(\bar{x}=\) Mean, \(n =\) Total number of observations

    Mean \(=\frac{(1+0+2+3+1+1+15+1+3) }{9}=\frac{27}{9}=3\)

    Mean Deviation (M.D) about mean will be = Subtract Mean from each given data set values

    Example, \(0-3=3\) (don't consider the sign here, only focus on the values)

    \(1-3=2,2-3=1,3-3=0,15-3=12\)

    M.D (Mean) \(=\frac{(3+2+2+2+2+1+0+12)}{9}=\frac{24}{9}=\frac{8}{3}\)

    As we have calculated above the value of Mean Deviation(M.D) \(=3,2,2,2,2,1,12\)

    The value of Variance \(=\frac{\left(3^{2}+2^{2}+2^{2}+2^{2}+2^{2}+1^{2}+12^{2}\right)}{9}=\frac{\sqrt{170}}{\sqrt{9}}={\frac{\sqrt{170}}{3}}\)

    \(\therefore\) Standard Deviation (S.D) \(=\sqrt{\left(\frac{170}{9}\right)^{2}}=\frac{170}{9}\)

  • Question 5
    1 / -0

    Find slope of the tangent to the curve \(2 x^{3}+3 y=2 y^{3}+3 x\) at \(p(x, y)\).

    Solution

    The slope of the tangent to the curve:

    The slope of curve \(y = f ( x )\) at some point \(P \left( x _{1}, y _{1}\right)\) means the slope of the tangent to the curve at \(P \left( x _{1}, y _{1}\right)\).

    The slope is given as \(m\), where \(m =\frac{ dy }{ dx }\) at \(\left( x _{1}, y _{1}\right)\).

    Given: \(2 x^{3}+3 y=2 y^{3}+3 x\)

    Differentiating with respect to \(x\)

    \(2\left(3 x^{2}\right)+3 \frac{d y}{d x}=2\left(3 y^{2} \frac{d y}{d x}\right)+3(1)\)

    \(6 x^{2}+3 \frac{d y}{d x}=6 y^{2} \frac{d y}{d x}+3\)

    Taking \(\frac{ dy }{ dx }\) on one side, we get:

    \(6 x^{2}-3=\left(6 y^{2}-3\right) \frac{d y}{d x}\)

    \(\frac{d y}{d x}=\frac{6 x^{2}-3}{6 y^{2}-3}\)

  • Question 6
    1 / -0

    Find the sum of the series 3 + 9 + 27 + 81 + ..... + 6561.

    Solution

    We have to find the sum of the series 3 + 9 + 27 + 81 + ..... + 6561

    Here,

    a = 3

    r = 3

    Let, an = 6561

    As we know that, the the general term of a GP is given by:

    \(a_{n}=a r^{n-1}\)

    \(\Rightarrow 6561=(3) \cdot(3)^{n-1}\)

    \(\Rightarrow 3^{n}=3^{8}\)

    \(\therefore \mathrm{n}=8\)

    As we know that,

    Sum of \(n\) terms of GP,

    \(\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}\);

    where \(r>1\)

    \(\therefore \mathrm{S}_{\mathrm{n}}=\frac{3\left(3^{8}-1\right)}{3-1}\)

    \(=\frac{3\left(3^{8}-1\right)}{2}\)

  • Question 7
    1 / -0

    Find the values of \(k\) so the line \(\frac{x-2}{2 k}=\frac{y-3}{3}=\frac{z+2}{-1}\) and \(\frac{x-2}{8}=\frac{y-3}{6}=\frac{z+2}{-2}\) are parallel.

    Solution

    Given lines are \(\frac{ x -2}{2 k }=\frac{ y -3}{3}=\frac{ z +2}{-1}\) and \(\frac{ x -2}{8}=\frac{ y -3}{6}=\frac{ z +2}{-2}\)

    The direction ratio of the first line is \((2 k, 3,-1)\) and the direction ratio of second line is \((8,6,-2)\)

    Lines are parallel;

    So, \(\frac{2 k }{8}=\frac{3}{6}=\frac{-1}{-2}\)

    \(\frac{ k }{4}=\frac{1}{2}=\frac{1}{2}\)

    \(\therefore k =2\)

  • Question 8
    1 / -0

    Let \(\mathrm{z}_1\) and \(\mathrm{z}_2\) be two complex number such that \(\mathrm{z}_1+\mathrm{z}_2=5\) and \(z_1^3+z_2^3=20+15 i\). Then \(\left|z_1^4+z_2^4\right|\) equals-

    Solution

    z1+z2=5
    z13+z23=20+15i
    z13+z23=(z1+z2)33z1z2(z1+z2)
    z13+z23=1253z1z2(5)
    20+15i=12515z1z2
    3z1z2=2543i
    3z1z2=213i
    z1z2=7i
    (z1+z2)2=25
    z12+z22=252(7i)
    11+2i
    (z12+z22)2=1214+44i
    z14+z24+2(7i)2=117+44i
    z14+z24=117+44i 2(49114i)
    |z14+z24|=75

  • Question 9
    1 / -0

    Using principle of mathematical induction, prove that for all \(n \in N, \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\) is a:

    Solution

    Given:

    \(\mathrm{P}(\mathrm{n}): \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\) is a natural number, for all \(n \in N\).

    \(P(1): \) \(\frac{1^{5}}{5}+\frac{1^{3}}{3}+\frac{7(1)}{15}=\frac{3+5+7}{15}=\frac{15}{15}=1\), which is a natural number.

    So, \(\mathrm{P}(1)\) is true.

    Let \(P(n)\) be true for some \(n=k\).

    Then \(\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}\) is natural number,

    Now, \(\frac{(k+1)^{5}}{5}+\frac{(k+1)^{3}}{3}+\frac{7(k+1)}{15}\)

    Let \(P(n)\) be true for some \(n=k+1\).

    \(\frac{k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1}{5}+\frac{k^{3}+1+3 k^{2}+3 k}{3}+\frac{7 k+7}{15} \)

    \(=\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+k^{4}+2 k^{3}+3 k^{2}+2 k+1 \)

    \(=P(k)+k^{4}+2 k^{3}+2 k^{2}+2 k+1 \)

    = Natural number

    Thus, \(P(k+1)\) is true whenever \(P(n)\) is true.

    So, by the principle of mathematical induction, \(\mathrm{P}(\mathrm{n})\) is true for any natural number \(\mathrm{n}\).

  • Question 10
    1 / -0

    Evaluate \(\underset{{{x \rightarrow 0}}}{\lim} \frac{x \tan x}{1-\cos x}\)

    Solution

    Given,

    \(\underset{{{x \rightarrow 0}}}{\lim} \frac{x \tan x}{1-\cos x}\)

    We know that:

    \(\underset{{{x \rightarrow a}}}{\lim}\left[\frac{f(x)}{g(x)}\right]=\frac{\underset{{{x \rightarrow a}}}{\lim} f(x)}{\underset{{{x \rightarrow a}}}{\lim} g(x)}\), provided \(\underset{{{x \rightarrow a}}}{\lim} g(x) \neq 0\)

    \(\cos 2 x=1-2 \sin ^{2} x\)

    \(\underset{{{x \rightarrow 0} }}{\lim}\frac{\tan x}{x}=1\)

    \(\underset{{{x \rightarrow 0} }}{\lim} \frac{\sin x}{x}=1\)

    \(\Rightarrow \underset{{{x \rightarrow 0}}}{\lim} \frac{x \tan x}{2 \sin ^{2} \frac{x}{2}}\)

    \(=\frac{1}{2} \underset{{{x \rightarrow 0}}}{\lim} \left[ \frac{\tan x}{x} \times \frac{x \cdot x}{\frac{\sin ^{2} \frac{x}{2}}{\left(\frac{x}{2}\right)^{2}} \times\left(\frac{x}{2}\right)^{2}}\right]\)

    \(=\frac{1}{2} \underset{{{x \rightarrow 0}}}{\lim}\left[\frac{\tan x}{x} \times \frac{4}{\frac{\sin ^{2} \frac{x}{2}}{\left(\frac{x}{2}\right)^{2}}}\right]\)

    \(=\frac{1}{2} \left(\underset{{{x \rightarrow 0}}}{\lim} \left[\frac{\tan x}{x}\right]\right) \times \frac{4}{ \left(\underset{{{x \rightarrow 0}}}{\lim}\left[\frac{\sin ^{2} \frac{x}{2}}{\left(\frac{x}{2} \right)^{2}}\right]\right)} \)

    \(=\frac{1}{2} \times 1 \times 4\)

    \(=2\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now