Mean
|
\(\bar{x}=\frac{\sum x}{n}\)
|
\({x}=\) Observations given, \({n}=\) Total number of observations
|
Mean Deviation from Mean \(=\frac{\sum|x-\bar{x}|}{n}\)
Mean Deviation from Median \(=\frac{\sum|x-M|}{n}\)
Here,
\(\sum\) represents the summation
\(x=\) Observations given
\(\bar{x}=\) Mean
\(n =\) The number of observations
\(M =\) Median
Variance |
\(\sigma^{2}=\frac{\sum(x-\bar{x})^{2}}{n}\) |
\(x =\) Observations given, \(\bar{x}=\) Mean, \(n =\) Total number of observations |
Standard Deviation |
\(S=\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}\) |
\(x =\) Observations given, \(\bar{x}=\) Mean, \(n =\) Total number of observations |
Mean \(=\frac{(1+0+2+3+1+1+15+1+3) }{9}=\frac{27}{9}=3\)
Mean Deviation (M.D) about mean will be = Subtract Mean from each given data set values
Example, \(0-3=3\) (don't consider the sign here, only focus on the values)
\(1-3=2,2-3=1,3-3=0,15-3=12\)
M.D (Mean) \(=\frac{(3+2+2+2+2+1+0+12)}{9}=\frac{24}{9}=\frac{8}{3}\)
As we have calculated above the value of Mean Deviation(M.D) \(=3,2,2,2,2,1,12\)
The value of Variance \(=\frac{\left(3^{2}+2^{2}+2^{2}+2^{2}+2^{2}+1^{2}+12^{2}\right)}{9}=\frac{\sqrt{170}}{\sqrt{9}}={\frac{\sqrt{170}}{3}}\)
\(\therefore\) Standard Deviation (S.D) \(=\sqrt{\left(\frac{170}{9}\right)^{2}}=\frac{170}{9}\)