Self Studies

Mathematics Test - 47

Result Self Studies

Mathematics Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find \(\cot \left[\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{8}\right]=?\)

    Solution

    Given,

    \(\cot \left[\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{8}\right]=\)

    \(=\cot [\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{8}}{1-\frac{1}{2} \times \frac{1}{8}}\right)] \quad\left(\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{\tan x+\tan y}{1-\tan x \tan y}\right)\right)\)

    \(=\cot [\tan ^{-1} \frac{\left(\frac{2+8}{16}\right)}{\left(\frac{16-1}{16}\right)}]\)

    \(=\cot [\tan ^{-1} \frac{\left(\frac{10}{16}\right)}{\left(\frac{15}{16}\right)} ]\)

    \(=\cot [\tan ^{-1} \frac{10}{15}]\)\(=\cot^{-1} \frac{3}{2}\)

    Now,

    \(\cot \left[\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{8}\right] \)

    \(=\cot [\cot ^{-1} \frac{3}{2}]\)

    \(=\frac{3}{2}\)

  • Question 2
    1 / -0

    Find the area of the region bounded by the curves \(y=x^{3}+4 x+2\), the line \(x=0, x=4\) and the \(x\)-axis.

    Solution

    Here, we have to find the area of the region bounded by the curves \(y=x^{3}+4 x+2\), the line \(x=0, x=4\) and the \(x\)-axis.

    So, the area enclosed by the given curves is given by: 

    \(\int_{0}^{4}\left(x^{3}+4 x+2\right) d x\)

    As we know that, 

    \(\int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{C}\)

    \(\Rightarrow \int_{0}^{4}\left(x^{3}+4 x+2\right) d x\)

    \(=\left[\frac{x^{4}}{4}+\frac{4 x^{2}}{2}+2 x\right]_{0}^{4}\)

    \(= \frac{1}{4}(256)+\frac{64}{2}+(2 \times 4)\)

    \(=104\) square units

  • Question 3
    1 / -0

    The value of the \(\sin 1^{\circ}+\sin 2^{\circ}+\ldots+\sin 359^{\circ}\) is equal to:

    Solution

    Given,

    \(\sin 1^{\circ}+\sin 2^{\circ}+\ldots+\sin 359^{\circ}\)

    We know that,

    \(\sin (180-\theta)=\sin \theta\).....(i)

    \(\sin (180+\theta)=-\sin \theta\)....(ii)

    Therefore, Rewrite the given expression in terms of \((180-\theta)\) and \((180+\theta)\) we get,

    \(\sin 1^{\circ}+\sin 2^{\circ}+\cdots+\sin \left(180^{\circ}\right)+\sin \left(180^{\circ}+1^{\circ}\right)+\sin \left(180^{\circ}+2^{\circ}\right)+\cdots+\sin \left(180^{\circ}+179^{\circ}\right)\)

    \(=\sin 1^{\circ}+\sin 2^{\circ}+\cdots+\sin \left(179^{\circ}\right)+\sin \left(180^{\circ}\right)-\sin \left(1^{\circ}\right)-\sin \left(2^{\circ}\right)+\cdots-\sin \left(179^{\circ}\right)\)

    \(=\sin 180^{\circ}\)

    \(=0\)

  • Question 4
    1 / -0

    If nth term of a series is given by Tn = 3n + 2, where n is a natural number then find the value of\(S_{n}=\sum_{k=1}^{n} T_{k}=?\)

    Solution

    Given,

    nth term of a series is Tn = 3n + 2

    Here, we have to find the value of\(S_{n}=\sum_{k=1}^{n} T_{k}=?\)

    Sum of series\(=\mathrm{S}_{\mathrm{n}}=\sum(3 \mathrm{n}+2)=\sum 3 \mathrm{n}+\sum 2\)

    As we know that,

    \(1+2+3+4+\ldots+\mathrm{n}=\sum \mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)

    \(\Rightarrow \mathrm{S}_{\mathrm{n}}=3 \sum \mathrm{n}+\sum 2\)

    \(\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{3 \mathrm{n}(\mathrm{n}+1)}{2}+2 \mathrm{n}=\frac{\mathrm{n}(3 \mathrm{n}+7)}{2}\)
     

  • Question 5
    1 / -0

    Let \(A=\left[a_{i j}\right]\) be a square matrix of order 3 such that \(a_{i j}=2^{j-i}\), for all \(\mathrm{i}, \mathrm{i}=1,2,3\). Then, the matrix \(\mathrm{A}^2+\mathrm{A}^3+\ldots \ldots+\mathrm{A}^{10}\) is equal to :

    Solution

    Given, \(\mathrm{a}_{\mathrm{ij}}=2^{\mathrm{j}-\mathrm{i}}\)

    Now, \(A=\left[\begin{array}{ccc}2^0 & 2^1 & 2^2 \\ 2^{-1} & 2^0 & 2^1 \\ 2^{-2} & 2^{-1} & 2^0\end{array}\right]\)

    \(=\left[\begin{array}{ccc}1 & 2 & 4 \\ \frac{1}{2} & 1 & 2 \\ \frac{1}{4} & \frac{1}{2} & 1\end{array}\right]\)

    \(A^2=\left[\begin{array}{ccc}1 & 2 & 4 \\ \frac{1}{2} & 1 & 2 \\ \frac{1}{4} & \frac{1}{2} & 1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 4 \\ \frac{1}{2} & 1 & 2 \\ \frac{1}{4} & \frac{1}{2} & 1\end{array}\right]\)

    \(=\left[\begin{array}{ccc}1+1+1 & 2+2+2 & 4+4+4 \\ \frac{1}{2}+\frac{1}{2}+\frac{1}{2} & 1+1+1 & 2+2+2 \\ \frac{1}{4}+\frac{1}{4}+\frac{1}{4} & \frac{1}{2}+\frac{1}{2}+\frac{1}{2} & 1+1+1\end{array}\right]\)

    \(=\left[\begin{array}{ccc}3 & 6 & 12 \\ \frac{3}{2} & 3 & 6 \\ \frac{3}{4} & \frac{3}{2} & 3\end{array}\right]\)

    \(=3\left[\begin{array}{ccc}1 & 2 & 4 \\ \frac{1}{2} & 1 & 2 \\ \frac{1}{4} & \frac{1}{2} & 1\end{array}\right]\)

    \(=3 \mathrm{~A}\)

    Similarly, \(\mathrm{A}^3=3^2 \mathrm{~A}\)

    \( A^4=3^3 A \\\)

    \( \therefore A^2+A^3+\ldots \ldots+A^{10} \\\)

    \( =3 A+3^2 A+3^3 A+\ldots \ldots+3^9 A \\\)

    \( =A\left(3+3^2+3^3+\ldots \ldots+3^9\right) \\\)

    \( =A\left(\frac{3\left(3^9-1\right)}{3-1}\right)=\frac{3\left(3^9-1\right)}{2} A=\left(\frac{3^{10}-3}{2}\right) A\)

  • Question 6
    1 / -0

    If two sides of a triangle are represented by \(x^2-7 x y+6 y^2=\) 0 and the centroid is \((1,0)\), then the equation of third side is

    Solution

    Given two lines are \(x-6 y=0\) and \(x-y=0\).

    We know \(\frac{0+x_1+x_2}{3}=1\)

    \(\Rightarrow x_1+x_2=3 \).....(i)

    and \( y_1+y_2=0\).........(ii)

    Also, \(x_1-6 y_1=0 \).............(iii)

    \(x_2-y_2=0\)......(iv)

    [Since the points \(\left(x_1, y_1\right)\) and \(\left(x_2, y_2\right)\) lie on the lines \(A B\) and \(A C\) respectively]

    Now on solving, the co-ordinates of \(B\) and \(C\) are \(\left(\frac{18}{5}, \frac{3}{5}\right)\) and \(\left(\frac{-3}{5}, \frac{-3}{5}\right)\) respectively.

    Hence, the equation of third side i.e., \(B C\) is \(2 x-7 y-3=0\).

  • Question 7
    1 / -0

    A class of \(30\) students occupy a classroom containing \(5\) rows of seats, with \(8\) seats in each row. If the student seat themselves at random, the probability that the sixth seat in the fifth row will be empty is:

    Solution

    Given:

    No. of Students in class \(=30\) students

    \(30\) students have to sit on \(40\) seats

    Total seats \(=(5\) row \() \times(8\) seats \()=40\) seats

    Total no. of ways \(={ }^{40} C_{30}\)

    For \(6^{\text {th }}\) seat of \(5^{\text {th }}\) row to be empty, all \(30\) students have to sit on remaining \(39\) seats.

    No. of favourable ways \(={ }^{39} C_{30}\)

    Probability (sixth seat in the fifth row will be empty)\(=\frac{\text { No. of favourable ways }}{\text { Total no. of ways }}\)

    \(=\frac{{ }^{39} C_{30}}{{ }^{40} C_{30}}\)

    \(=\frac{1}{4}\)

  • Question 8
    1 / -0

    If \(a_1, a_2, \ldots \ldots \ldots \ldots, a_n\) are in H.P., then the expression \(a_1 a_2+a_2 a_3+\ldots \ldots \ldots \ldots+a_{n-1} a_n\) is equal to:

    Solution

    \( \because a_1, a_2, a_3 \ldots \ldots . a_n \text { are in H.P. } \\\)

    \( \therefore \frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3} \cdots \frac{1}{a_n} \text { are in A.P. } \\\)

    \( \therefore \frac{1}{a_2}-\frac{1}{a_1}=\frac{1}{a_3}-\frac{1}{a_2}=\ldots \ldots \ldots \ldots i=\frac{1}{a_n}-\frac{1}{a_{n-1}}=d \text { (say) } \\\)

    \( \text { Then } a_1 a_2=\frac{a_1-a_2}{d}, a_2 a_3=\frac{a_2-a_3}{d} \\\)

    \( \because \ldots \ldots \ldots+a_{n-1} a_n=\frac{a_{n-1}-a_n}{d}\)

    Adding all equations, we get

    \(\therefore a_1 a_2+a_2 a_3+\ldots \ldots \ldots+a_{n-1} a_n \\\)

    \( =\frac{a_1-a_2}{d}+\frac{a_2-a_3}{d}+\ldots .+\frac{a_{n-1}-a_n}{d} \\\)

    \( =\frac{1}{d}\left[a_1-a_2+a_2-a_3+\ldots .+a_{n-1}-a_n\right]=\frac{a_1-a_n}{d}\)

    Also, \(\frac{1}{a_n}=\frac{1}{a_1}+(n-1) d\)

    \( \Rightarrow \frac{a_1-a_n}{a_1 a_n}=(n-1) d \\\)

    \( \Rightarrow \frac{a_1-a_n}{d}=(n-1) a_1 a_n\)

  • Question 9
    1 / -0

    Solve the differential equation \(x d y-2 y d x=0\)

    Solution

    \( x d y-2 y d x=0 \)

    \( \Rightarrow x d y=2 y d x \)

    \( \Rightarrow \frac{d y}{y}=2 \frac{d x}{x}\)

    Integrating both sides, we get

    \( \Rightarrow \int \frac{ dy }{ y }=2 \int \frac{ dx }{ x } \)

    \( \Rightarrow \ln y =2 \ln x +\ln c \)

    \(\Rightarrow \ln y =\ln x ^2+\ln c \)

    \( \Rightarrow \ln y -\ln x ^2=\ln c \)

    \( \Rightarrow \ln \frac{ y }{ x ^2}=\ln c \)

    \(\therefore y = x ^2 c\)

  • Question 10
    1 / -0

    If \(|\overrightarrow{\mathrm{a}}|=10,|\overrightarrow{\mathrm{b}}|=2\) and \(\overrightarrow{\mathrm{a}}. \overrightarrow{\mathrm{b}}=12\), then what is the value of \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}| ?\)

    Solution

    Given: \(|\overrightarrow{\mathrm{a}}|=10,|\overrightarrow{\mathrm{b}}|=2\) and \(\overrightarrow{\mathrm{a}}. \overrightarrow{\mathrm{b}}=12\)

    As we know, \(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}| \cdot|\overrightarrow{\mathrm{b}}| \cos \theta\)

    \(\Rightarrow 12=10 \times 2 \times \cos \theta\)

    \(\Rightarrow \cos \theta=\frac{12}{20}=\frac{3}{5}\)

    As we know, \(\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}\)

    \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}| \cdot|\overrightarrow{\mathrm{b}}| \sin \theta\)

    \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=10 \times 2 \times \frac{4}{5}=16\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now