Self Studies

Mathematics Test - 48

Result Self Studies

Mathematics Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Evaluate the integral \(\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x\).

    Solution

    Given, \(\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x\).

    Let \(t=\tan ^{-1} x\), \( \quad \ldots \ldots(i)\)

    Differentiating with respect to \(x\),

    Then \(\frac{dt}{dx}=\frac{1}{1+x^{2}}\)

    \(d t=\frac{1}{1+x^{2}} d x\)

    The new limits to \(eq^{n}(i)\),

    When \(x=0\), \(t=0\)

    And when \(x=1, t=\frac{\pi}{4}\)

    Therefore,

    \(\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x\) \(=\int_{0}^{\frac{\pi}{4}} t d t\)

    \(=\left[\frac{t^{2}}{2}\right]_{0}^{\frac{\pi}{4}}\)

    Put the value of limit,

    \(=\frac{1}{2}\left[\frac{\pi^{2}}{16}-0\right]\)

    \(=\frac{\pi^{2}}{32}\)

  • Question 2
    1 / -0
    The value of \((\sqrt{-6} \times \sqrt{-6})\) is:
    Solution
    Let;
    \(x=(\sqrt{-6} \times \sqrt{-6})\)
    We know that:
    \({i}=\sqrt{(-1)}\)
    \({i}^{2}=-1\)
    \(x=(\sqrt{6} \times i \times \sqrt{6} \times i)\)
    \(x=6 i^{2}\)
    \(x=-6\)
  • Question 3
    1 / -0

    If \(A=\left\{x \in R : x^{2}=2\right\}\) and \(B=\left\{y \in R : y^{2}-5 y+6=0\right\}.\) Find \(n(A \times B)\).

    Solution

    Given:

    \(A=\left\{x \in R: x^{2}=2\right\}\)

    And, \(B=\left\{y \in R: y^{2}-5 y+6=0\right\}\)

    Then,

    \({x}^{2}-2=0 \quad\) (Given)

    \(\Rightarrow {x}=\pm \sqrt{2}\)

    \(\Rightarrow {A}=\{\sqrt{2},-\sqrt{2}\}\)

    \(\therefore {n}({A})=2\).

    Similarly,

    \({y}^{2}-5 {y}+6=0 \quad\) (Given)

    \(\Rightarrow y^{2}-3 y-2 y+6=0\)

    \(\Rightarrow(y-3)(y-2)=0\)

    \(\Rightarrow {y}=2,3\)

    \(\Rightarrow {B}=\{2,3\}\)

    \(\therefore {n}({B})=2\).

    As we know that, if \(n(A)=p, n(B)=q\), then:

    \(n(A \times B)=n(A) \times n(B)=p \times q\).

    \(\Rightarrow {n}({A} \times {B})={n}({A}) \times {n}({B})\)

    \(=2 \times 2\)

    \(=4\)

  • Question 4
    1 / -0

    Let \(\mathrm{A}=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]\). If \(\mathrm{M}\) and \(\mathrm{N}\) are two matrices given by \(\mathrm{M}=\sum_{\mathrm{k}=1}^{10} \mathrm{~A}^{2 \mathrm{k}}\) and \(\mathrm{N}=\sum_{\mathrm{k}=1}^{10} \mathrm{~A}^{2 \mathrm{k}-1}\) then \(\mathrm{MN}^2\) is :

    Solution

    \(A=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]\)

    \(A^2=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}-4 & 0 \\ 0 & -4\end{array}\right]=-4 I\)

    \( \mathrm{M}=\mathrm{A}^2+\mathrm{A}^4+\mathrm{A}^6+\ldots .+\mathrm{A}^{20} \\\)

    \( =-4 \mathrm{I}+16 \mathrm{I}-64 \mathrm{I}+\ldots . \text { upto } 10 \text { terms } \\\)

    \( =-\mathrm{I}[4-16+64 \ldots+\text { upto } 10 \text { terms }] \\\)

    \(=-\mathrm{I} .4\left[\frac{(-4)^{10}-1}{-4-1}\right]=\frac{4}{5}\left(2^{20}-1\right) \mathrm{I} \\\)

    \( \mathrm{N}=\mathrm{A}^1+\mathrm{A}^3+\mathrm{A}^5+\ldots .+\mathrm{A}^{19} \\\)

    \( =\mathrm{A}-4 \mathrm{~A}+16 \mathrm{~A}+\ldots . \text { upto } 10 \text { terms } \\\)

    \( =\mathrm{A}\left(\frac{(-4)^{10}-1}{-4-1}\right)=-\left(\frac{2^{20}-1}{5}\right) \mathrm{A} \\\)

    \( \mathrm{N}^2=\frac{\left(2^{20}-1\right)^2}{2^5} \mathrm{~A}^2=\frac{-4}{24}\left(2^{20}-1\right)^2 \mathrm{I} \\\)

    \( \mathrm{MN}^2=\frac{-16}{125}\left(2^{20}-1\right)^3 \mathrm{I}=\mathrm{KI} \quad(\mathrm{K} \neq \pm 1) \\\)

    \( \left(\mathrm{MN}^2\right)^{\mathrm{T}}=(\mathrm{KI})^{\mathrm{T}}=\mathrm{KI} \\\)

    \( \therefore \mathrm{A} \text { is correct }\)

  • Question 5
    1 / -0

    A plane passes through the points \(\mathrm{A}(1,2,3), \mathrm{B}(2,3,1)\) and \(\mathrm{C}(2,4,2)\). If 0 is the origin and \(\mathrm{P}\) is \((2,-1,1)\), then the projection of OP on this plane is of length.

    Solution

    Refer diagram, the normal vector be \(\mathrm{n}\) and it is perpendicular to both

    \(\mathrm{AB}\) and \(\mathrm{AC}\)

    \(\mathrm{AB} \times \mathrm{AC}=\mathrm{n}\)

    \(\begin{aligned} & \text { Now, } A(1,2,3), B(2,3,1) \text { and } C(2,4,2) \\ & \text { Then, } A B=(2-1) \hat{i}+(3-2) \hat{j}+(1-3) \hat{k} \\ & =\hat{i}+\hat{j}-2 \hat{k} \\ & -1) \hat{i}+(4-2) \hat{j}+(2-3) \hat{k} \\ & \begin{array}{l}A C=(2-1) \hat{i}+(4 \\ =\hat{i}+2 \hat{j}-\hat{k}\end{array}\end{aligned}\)

    Now, \(A B \times A C=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \hat{j} & \mathrm{k} & \\ 1 & 1 & -2 \\ 1 & 2 & -1\end{array}\right|\)

    \(\begin{aligned} & =\hat{i}(-1+4)-\hat{j}(-1+2)+\hat{k}(2-1) \\ & =3 \hat{i}-\hat{j}+\hat{k} \\ n & =3 \hat{i}-\hat{j}+\hat{k}\end{aligned}\)

    Let P be any point on normal vector and O be origin. Then refer the diagram, projection of OP on plane have length OM .

    \(\begin{aligned} & \text { OP }=2 \hat{i}-\hat{j}+\hat{k} \text { and } n=3 \hat{i}-\hat{j}+\hat{k} \\ & \text { OP. } n=|O P||n| \cos \theta \\ & (6+1+1)=\sqrt{4+1+1}(\sqrt{9+1+1}) \cos \theta \\ & 8=\sqrt{6} \sqrt{11} \cos \theta \Rightarrow \cos \theta=\frac{8}{\sqrt{66}} \\ & \text { Again, } \sin \theta=\frac{|\mathrm{OM}|}{|\mathrm{OP}|}, \text { gives }|\mathrm{OM}|=\sin \theta \cdot|\mathrm{OP}| \\ & \Rightarrow|\mathrm{OM}|=\sqrt{1-\cos ^2 \theta|\mathrm{OP}|} \\ & \left.=\sqrt{1-\frac{64}{66}} \sqrt{4+1+1} \quad \text { (use } \cos \theta=8 \sqrt{66}\right) \\ & =\sqrt{\frac{2}{66}} \cdot \sqrt{6} \\ & \therefore|O M|=\sqrt{\frac{2}{11}}\end{aligned}\)

  • Question 6
    1 / -0

    In any group, the number of improper subgroups is:

    Solution

    If G is a group, then the subgroup consisting of G itself is the improper subgroup of G. All other subgroups are proper subgroups

    In any group, the number of improper subgroups is 2.

  • Question 7
    1 / -0

    In linear programming, lack of points for a solution set is said to have:

    Solution

    If there is no point in the feasible set, there is no feasible solution of the linear programming model.

    In linear programming, lack of points for a solution set is said to have no feasible solution

  • Question 8
    1 / -0

    Find the area of the region (in square unit) bounded by the curve \(y=x-2\) and \(x=0\) to \(x=4\).

    Solution

    Given curve and lines are:

    \(y=x-2\) and \(x=0\) to \(x=4\)

    In figure \(\triangle \mathrm{ABC}\) and \(\triangle \mathrm{AOD}\) is similar.

    So, Area of the region \(=2 \times(\) Area of \(\triangle \mathrm{ABC})\)

    For the area of \(\triangle A B C\)

    We know that:

    \(=\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left|\mathrm{y}_{2}-\mathrm{y}_{1}\right| \mathrm{dx}\)

    \(=\int_{2}^{4}(\mathrm{x}-2) \mathrm{dx}\)

    \(=\left[\frac{\mathrm{x}^{2}}{2}-2 \mathrm{x}\right]_{2}^{4}\)

    \(=\frac{4^{2}}{2}-2(4)-\left(\frac{2^{2}}{2}-2 \times 2\right)\)

    \(=8-8-2+4\)

    \(=2 \) sq. unit

    So,

    Area of the region \(=2 \times(\) Area of \(\triangle \mathrm{ABC})\)

    \(=2 \times 2\)

    \(=4 \) sq. unit

  • Question 9
    1 / -0
    Let \(R\) be a relation on a set \(A\) such that \(R=R^{-1}\), then \(R\) is:
    Solution
    Let \({R}\) be a relation on \({Z}\), and let \({x}, {y}, {z} \in {Z}\).
    1. Reflexive

    \(xRx\)

    1. Symmetric

    \(xRy\) implies \(yRx\)

    1. Transitive

    \(xRy\) and \(yRz\) implies \(xRz\)

    Let \((a, b) \in R\)
    Then \((a, b) \in R \Rightarrow(b, a) \in R^{-1}\)
    \((b, a) \in R\left[\right.\) Because \(\left.R=R^{-1}\right]\)
    \((a, b) \in R \Rightarrow(b, a) \in R\), for all \((a, b) \in A\)
    \(a R b \Rightarrow b R a\)
    \(\therefore {R}\) is symmetric
  • Question 10
    1 / -0

    Find the values of \({k}\) so the line \(\frac{2 {x}-2}{2 {k}}=\frac{4-{y}}{3}=\frac{{z}+2}{-1}\) and \(\frac{{x}-5}{1}=\frac{{y}}{{k}}=\frac{{z}+6}{4}\) are at right angles

    Solution

    Given lines are \(\frac{2 {x}-2}{2 {k}}=\frac{4-{y}}{3}=\frac{{z}+2}{-1}\) and \(\frac{{x}-5}{1}=\frac{{y}}{{k}}=\frac{{z}+6}{4}\)

    Write the above equation of a line in the standard form of lines

    \(\Rightarrow \frac{2(x-1)}{2 k}=\frac{-(y-4)}{3}=\frac{z+2}{-1} \Leftrightarrow \frac{(x-1)}{k}=\frac{y-4}{-3}=\frac{z+2}{-1}\)

    So, the direction ratio of the first line is \(({k},-3,-1)\)

    \(\frac{{x}-5}{1}=\frac{{y}}{{k}}=\frac{{z}+6}{4}\)

    So, direction ratio of second line is \((1,{k}, 4)\)

    Lines are perpendicular,

    \(\therefore({k} \times 1)+(-3 \times {k})+(-1 \times 4)=0\)

    \(\Rightarrow k-3 k-4=0\)

    \(\Rightarrow-2 k-4=0\)

    \(\therefore{k}=-2\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now