Refer diagram, the normal vector be \(\mathrm{n}\) and it is perpendicular to both
\(\mathrm{AB}\) and \(\mathrm{AC}\)
\(\mathrm{AB} \times \mathrm{AC}=\mathrm{n}\)

\(\begin{aligned} & \text { Now, } A(1,2,3), B(2,3,1) \text { and } C(2,4,2) \\ & \text { Then, } A B=(2-1) \hat{i}+(3-2) \hat{j}+(1-3) \hat{k} \\ & =\hat{i}+\hat{j}-2 \hat{k} \\ & -1) \hat{i}+(4-2) \hat{j}+(2-3) \hat{k} \\ & \begin{array}{l}A C=(2-1) \hat{i}+(4 \\ =\hat{i}+2 \hat{j}-\hat{k}\end{array}\end{aligned}\)
Now, \(A B \times A C=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \hat{j} & \mathrm{k} & \\ 1 & 1 & -2 \\ 1 & 2 & -1\end{array}\right|\)
\(\begin{aligned} & =\hat{i}(-1+4)-\hat{j}(-1+2)+\hat{k}(2-1) \\ & =3 \hat{i}-\hat{j}+\hat{k} \\ n & =3 \hat{i}-\hat{j}+\hat{k}\end{aligned}\)
Let P be any point on normal vector and O be origin. Then refer the diagram, projection of OP on plane have length OM .

\(\begin{aligned} & \text { OP }=2 \hat{i}-\hat{j}+\hat{k} \text { and } n=3 \hat{i}-\hat{j}+\hat{k} \\ & \text { OP. } n=|O P||n| \cos \theta \\ & (6+1+1)=\sqrt{4+1+1}(\sqrt{9+1+1}) \cos \theta \\ & 8=\sqrt{6} \sqrt{11} \cos \theta \Rightarrow \cos \theta=\frac{8}{\sqrt{66}} \\ & \text { Again, } \sin \theta=\frac{|\mathrm{OM}|}{|\mathrm{OP}|}, \text { gives }|\mathrm{OM}|=\sin \theta \cdot|\mathrm{OP}| \\ & \Rightarrow|\mathrm{OM}|=\sqrt{1-\cos ^2 \theta|\mathrm{OP}|} \\ & \left.=\sqrt{1-\frac{64}{66}} \sqrt{4+1+1} \quad \text { (use } \cos \theta=8 \sqrt{66}\right) \\ & =\sqrt{\frac{2}{66}} \cdot \sqrt{6} \\ & \therefore|O M|=\sqrt{\frac{2}{11}}\end{aligned}\)