Self Studies

Mathematics Test - 5

Result Self Studies

Mathematics Test - 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Of the members of three athletic teams in a school, 21 are in the cricket team, 26 are in the hockey team and 29 are in the football team. Among them, 14 play hockey and cricket, 15 play hockey and football, 12 play football and cricket and 8 play all three games. The total number of members in the three athletic teams is:

    Solution

    Let B, H, F denote the sets of members who are in the basket hall team, hockey team and football team respectively. 

    Given n(B) =21, n(H)= 2 6, n(F) = 29. 

    n(H∩B) = 14, n (H∩F) = 15, n(F∩B) = 12 and n(B ∩ H ∩ F) = 8.

    We have to find n(B U H U F) i.e., The total number of members in the three athletic teams.

    n(B U H U F) = n(B) + n(H).n(F) − n(B ∩ H) − n(H ∩ F) − n(F ∩ B) + n(B ∩ H ∩ F).

    n(B U H U F) = (21 + 26 + 29) − (14 + 15 + 12) + 8 = 43 

  • Question 2
    1 / -0

    If \(\sin ^{-1} \frac{3}{x}+\sin ^{-1} \frac{9}{x}=\frac{\pi}{2}\) then what is the value of \(x\) ?

    Solution

    Here, \(\sin ^{-1} \frac{3}{x}+\sin ^{-1} \frac{9}{x}=\frac{\pi}{2}\)

    Let,

    \(\sin ^{-1} \frac{9}{x}=y \cdots(1)\)

    \(\Rightarrow \sin y=\frac{9}{x}\)

    \(\therefore \cos ^2 y=1-\sin ^2 y\)

    \(=1-\left(\frac{9}{x}\right)^2\)

    \(=1-\frac{81}{x^2}\)

    \(\cos y=\frac{\sqrt{x^2-81}}{x}\)

    \(\Rightarrow y=\cos ^{-1} \frac{\sqrt{x^2-81}}{x}\)

    So, \(\sin ^{-1} \frac{9}{x}=\cos ^{-1} \frac{\sqrt{x^2-81}}{x}\)

    \(\sin ^{-1} \frac{3}{x}+\cos ^{-1} \frac{\sqrt{x^2-81}}{x}=\frac{\pi}{2}\)

    Now we know \(\sin ^{-1} \mathrm{y}+\cos ^{-1} \mathrm{y}=\frac{\pi}{2}\)

    So,\(\frac{3}{x}=\frac{\sqrt{x^2-81}}{x}\)

    \(9=x^2-81\)

    \(\Rightarrow x^2=90\)

    \(x=3 \sqrt{10}\)

  • Question 3
    1 / -0

    For all positive integrals \(10^{\mathrm{n}}+3^{4 \mathrm{n}+2}+8\) is divisible by:

    Solution

    Given:

    \(10^{\mathrm{n}}+3^{4 \mathrm{n}+2}+8\)

    Put \(n=1\) in \(10^{n}+3^{4 n+2}+8\).

    \(\therefore 10^{1}+3^{4+2}+8=10+729+8\)

    \(=747\)

    \(747=3 \times 3 \times 83\)

    Prime factors of 747 are \(3,3,83\).

    From the given options we can say that \(10^{n}+3^{4 n+2}+8\) is divisible by 9 ( \(\left.3 \times 3\right)\) for all positive values of \(n\).

  • Question 4
    1 / -0

    Which of the following functions, \(f: R \rightarrow R\) is one-one?

    Solution

    Let us check for each option:

    (A) Given:

    \(f(x)=|x|, \forall x \in R\)

    As we know that,

    \(f(x)=|x|\)

    \(\Rightarrow f(x)=\left\{\begin{array}{cc}-x, & x<0 \\ x, & x \geq 0\end{array}\right.\)

    So, \(f(-1)=-(-1)=1\) and \(f(1)=1\) 

    \(\Rightarrow f(-1)=f(1)\), but \(-1 \neq 1\)

    \(\therefore\) The property, \(f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\), does not hold true \(\forall x_{1}, x_{2} \in R\). 

    Therefore, the function \(\mathrm{f}(x)=|x|, \forall x \in R\) is not an injective function.

    (B) Given: 

    \(f(x)=x^{2}, \forall x \in R\)

    Let \(x_{1}=1\) and \(x_{2}=-1\)

    \(\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{x}_{1}^{2}=1\) 

    and, \(\mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{x}_{2}^{2}=1\) 

    \(\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)\), but \(-1 \neq 1\)

    \(\therefore\) The property, \(f\left(x_{1}\right)=f\left(x_{2}\right)\) \( \Rightarrow x_{1}=x_{2}\), does not hold true \(\forall x_{1}, x_{2} \in R\). 

    Therefore, the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, \forall \mathrm{x} \in \mathrm{R}\) is not an injective function.

    (C) Given: 

    \(f(x)=-x, \forall x \in R\)

    Let \(x_{1}\) and \(x_{2}\) be any two real numbers.

    \(\Rightarrow f\left(x_{1}\right)=-x_{1}\) and \(f\left(x_{2}\right)=-x_{2}\)

    If \(\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)\)

    \(\Rightarrow-\mathrm{x}_{1}=-\mathrm{x}_{2}\)

    \(\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}\)

    \(\therefore\) The property, \(f\left(x_{1}\right)=f\left(x_{2}\right)\)

    \(\Rightarrow x_{1}=x_{2}\), holds true \(\forall x_{1}, x_{2} \in R\)

    Therefore, the function \(f(x)=-x, \forall x \in R\) is an injective function.

  • Question 5
    1 / -0

    The coordinates of the foot of the perpendicular drawn from the point A(1,0,3) to the join of the points B(4,7,1) and C(3,5,3) are:

    Solution

    The given point is \(P (1,0,3)\) and equation of line passing through \((4,7,1)\) and \((3,5,3)\) is given by,

    \(\frac{ x -4}{1}=\frac{ y -7}{2}=\frac{ z -1}{-2}= k\) (let)...(1)

    So, any point on this line is Q\(( k +4,2 k +7,-2 k +1)\).

    Now direction ratios of \(PQ\) are \(k +3,2 k +7,-2 k -2\).

    Also \(PQ\perp\) (1)

    \(\therefore 1( k +3)+2(2 k +7)-2(-2 k -2)=0 \)

    \(\Rightarrow k +3+4 k +14+4k+2=0 \)

    \(\Rightarrow 9 k +21=0\)

    \(\Rightarrow 9 k=-21\)

    \(\Rightarrow k =\frac{-21}{7}\)

    \(\Rightarrow k =\frac{-7}{3}\)

    Coordinates of Q are \(x=\frac{-7}{3}+4,y=2\times \frac{-7}{3}+7,z= -2 \times\frac{-7}{3}+1\)

    \(\Rightarrow x=\frac{-7+12}{3},y=\frac{-14+21}{3}, z=\frac{14+3}{3}\)

    \(\Rightarrow x=\frac{5}{3},y=\frac{7}{3}, z=\frac{17}{3}\)

    So, the coordinates of the foot of the perpendicular drawn from the point \(A(1,0,3)\) to the join of the points \(B(4,7,1)\) and \(C(3,5,3)\) are \(\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)\).

  • Question 6
    1 / -0

    If \(\mathrm{P}, \mathrm{Q}\) and \(\mathrm{R}\) are three sets, then which of the following is correct?

    Solution

    Given: \(\mathrm{P}, \mathrm{Q}, \mathrm{R}\) are three sets

    \(P \cup(Q \cap R)\)

    \((P \cup Q) \cap(P \cup R)\)

    Venn Diagram

    \(\rightarrow\) It's used to illustrate the logical relation.

    \(=\) Ships between two or more sets or items.

    \(\Rightarrow\) They serve to graphically organize things, highlighting how the items are similar and different.

    \(=\) widely used in mathematics, statistics, logic, teaching, linguistics, computer science and business.

    Conclusion:

    \(P \cup(Q \cap R)=(P \cup Q) \cap(P \cup R)\)

  • Question 7
    1 / -0

    Find the value of θ if (3+2i sin θ )/(1-2i sin θ ) is purely real or purely imaginery.

    Solution


    z=3+2isinθ12isinθ=3+2isinθ12isinθ1+2isinθ1+2isinθz=(3+2isinθ)(1+2isinθ)1+4sin2θ=34sin2θ+8isinθ1+4sin2θ

    Now, z is purely real if sin θ=0 or θ =nπ, n Z

    Also, z is purely imaginary if 

    34sin2 θ=0

    or sinθ=±32=±sinπ3

    ⇒ g=nπ±π3,nZ

    z1z2¯=z¯1z¯2

    From above conclusion we can say that zn=z¯n , where nN

    (z1z2)=z¯1z¯2z20

  • Question 8
    1 / -0

    Find the maximum value of \(4 x+7 y\) with the conditions \(3 x+8 y \leq 24, y \leq 2, x \geq 0\) and \(y \geq 0\).

    Solution

    Given condition is, \(3 x+8 y \leq 24\)

    \({y} \leq 2, {x} \geq 0, {y} \geq 0\)

    The vertices of the feasible region are,

    \((0,0),(8,0),\left(\frac{8}{3}, 0\right)\) and \((0,2)\)

    Find the value of \(Z\) at all points,

    At O (0, 0), \(Z=4 \times 0 + 7 \times 0=0\)

    At A (8, 0), \(Z=4 \times 8 + 7 \times 0=32\)

    At B (\(\frac 8 3\), 0), \(Z=4 \times \frac 8 3 + 7 \times 2=\frac{74}{3}\)

    At C (0, 2), \(Z=4 \times 0 + 7 \times 2=14\)

    The maximum value of the objective function attains at \((8,0)\).

    \(Z=4 x+7 y\)

    The maximum value \(=4 \times 8+7 \times 0=32\).

  • Question 9
    1 / -0

    The factorized form of the following determinant is:

    \(\left|\begin{array}{ccc}1 & l & l^{2} \\ 1 & m & m^{2} \\ 1 & n & n^{2}\end{array}\right|\)

    Solution

    Given,

     

    \(\left|\begin{array}{ccc}1 & l & l^{2} \\ 1 & m & m^{2} \\ 1 & n & n^{2}\end{array}\right|\)

    Applying \(R _2 \rightarrow R _2-R _1\),

    \(\left|\begin{array}{ccc}1 & l & l^{2} \\ 0 & m-l & m^{2}-l^{2} \\ 1 & n & n^{2}\end{array}\right|\)

    Applying \(R _3 \rightarrow R _3-R _1\),

    \(\left|\begin{array}{ccc}1 & l & l^{2} \\ 0 & m-l & m^{2}-l^{2} \\ 0 & n-l & n^{2}-l^{2}\end{array}\right|\)

    \(\left|\begin{array}{ccc}1 & l & l^{2} \\ 0 & m-l & (m-l)(m+l) \\ 0 & n-l & (n-l)(n+l)\end{array}\right|\)

    \((m-l)(n-l)\left|\begin{array}{ccc}1 & l & l^{2} \\ 0 & 1 & (m+l) \\ 0 & 1 & (n+l)\end{array}\right|\)

    Now, expanding from \(a_{11}\),

    \((m-l)(n-l) \cdot 1 .\left[\begin{array}{cc}1 & m+l \\ 1 & n+l\end{array}\right]\)

    \(=(m-l)(n-l)(n+l-m-l)\)

    \(=(m-l)(n-l)(n-m)\)

     

     

  • Question 10
    1 / -0

    The angle between the lines x – 2y = y and y – 2x = 5 is:

    Solution

    Given,

    Lines are:

    \(x-2 y=5 \ldots \ldots \ldots .(i)\)

    and \(y-2 x=5 \ldots \ldots \ldots .(ii)\)

    Let \(m_1\) and \(m_2\) are the slope of the given lines

    From equation (i),

    \(x-5=2 y\)

    \(\Rightarrow y=\frac{x}{2}-\frac{5}{2}\)

    on comparing general equation of the line (\(y = mx +c\)) we get,

    \(m_{1}=\frac{1}{2}\)

    From equation (ii) ,

    \(y=2 x+5\)

    \(m_{2}=2\)

    Now, 

    Angle between the two lines is given by:

    \(\tan \theta=|\frac{(m_{1}+m_{2})}{{1+m_{1} \times m_{2}}}|\)

    \(\Rightarrow \tan \theta\) \(=|\frac{(\frac{1}{2}+2)}{\{1+(\frac{1}{2}) \times 2\}}|\)

    \(\Rightarrow \tan \theta\) \(=|\frac{(\frac{5}{2})}{(1+1)}|\)

    \(\Rightarrow \tan \theta\) \(=|\frac{(\frac{5}{2})}{2}|\)

    \(\Rightarrow \tan \theta\) \(=\frac{5}{4}\)

    \(\Rightarrow \theta=\tan ^{-1}(\frac{5}{4})\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now