Let us check for each option:
(A) Given:
\(f(x)=|x|, \forall x \in R\)
As we know that,
\(f(x)=|x|\)
\(\Rightarrow f(x)=\left\{\begin{array}{cc}-x, & x<0 \\ x, & x \geq 0\end{array}\right.\)
So, \(f(-1)=-(-1)=1\) and \(f(1)=1\)
\(\Rightarrow f(-1)=f(1)\), but \(-1 \neq 1\)
\(\therefore\) The property, \(f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\), does not hold true \(\forall x_{1}, x_{2} \in R\).
Therefore, the function \(\mathrm{f}(x)=|x|, \forall x \in R\) is not an injective function.
(B) Given:
\(f(x)=x^{2}, \forall x \in R\)
Let \(x_{1}=1\) and \(x_{2}=-1\)
\(\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{x}_{1}^{2}=1\)
and, \(\mathrm{f}\left(\mathrm{x}_{2}\right)=\mathrm{x}_{2}^{2}=1\)
\(\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)\), but \(-1 \neq 1\)
\(\therefore\) The property, \(f\left(x_{1}\right)=f\left(x_{2}\right)\) \( \Rightarrow x_{1}=x_{2}\), does not hold true \(\forall x_{1}, x_{2} \in R\).
Therefore, the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, \forall \mathrm{x} \in \mathrm{R}\) is not an injective function.
(C) Given:
\(f(x)=-x, \forall x \in R\)
Let \(x_{1}\) and \(x_{2}\) be any two real numbers.
\(\Rightarrow f\left(x_{1}\right)=-x_{1}\) and \(f\left(x_{2}\right)=-x_{2}\)
If \(\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)\)
\(\Rightarrow-\mathrm{x}_{1}=-\mathrm{x}_{2}\)
\(\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}\)
\(\therefore\) The property, \(f\left(x_{1}\right)=f\left(x_{2}\right)\)
\(\Rightarrow x_{1}=x_{2}\), holds true \(\forall x_{1}, x_{2} \in R\)
Therefore, the function \(f(x)=-x, \forall x \in R\) is an injective function.