Self Studies

Mathematics Test - 52

Result Self Studies

Mathematics Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of the expression: sin21° + sin211° + sin221° + sin231° + sin241° + sin249° + sin259° + sin269° + sin279° + sin289° is?

    Solution
    \(\sin ^{2} 1^{\circ}+\sin ^{2} 11^{\circ}+\sin ^{2} 21^{\circ}+\sin ^{2} 31^{\circ}+\sin ^{2} 41^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 49^{\circ}+\sin ^{2} 59^{\circ}+\)
    \(=\sin ^{2} 1^{\circ}+\sin ^{2} 11^{\circ}+\sin ^{2} 21^{\circ}+\sin ^{2} 31^{\circ}+\sin ^{2} 41^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 49^{\circ}+\sin ^{2} 59^{\circ}\)
    \(=\left(\sin ^{2} 1^{\circ}+\sin ^{2} 89^{\circ}\right)+\left(\sin ^{2} 11^{\circ}+\sin ^{2} 79^{\circ}\right)+\left(\sin ^{2} 21^{\circ}+\sin ^{2} 69^{\circ}\right)+\left(\sin ^{2} 31^{\circ}+\right.\)
    \(=1+1+1+1+1+\frac{1}{2}\)
    \(\left[\sin ^{2} \mathrm{A}+\sin ^{2} \mathrm{B}=1 . \text { If }, \mathrm{A}+\mathrm{B}=90^{\circ}\right]\)
    \(=5 \frac{1}{2}\)
  • Question 2
    1 / -0

    How many terms are there in 20, 25, 30......... 140

    Solution
    Number of terms, \(=\left\{\frac{\left(1^{\text {st}} \text {term }-\text { last term }\right)}{\text { common difference }}\right\}+1\) \(=\left(140-\frac{20}{5}\right)+1\)
    \(=\left(\frac{120}{5}\right)+1\)
    \(=24+1\)
    \(=25\)
  • Question 3
    1 / -0

    How many terms are there in the GP 5, 20, 80, 320........... 20480?

    Solution
    Common ratio, \(r=\frac{20}{5}=4\)
    Last term or \(n^{\text {th }}\) term of \(G P=a r^{n-1}\)
    \(20480=5 \times\left(4^{n-1}\right)\)
    Or, \(4^{n-1}=\frac{20480}{5}=4^{8}\)
    So, comparing the power, Thus, \(n-1=8\)
    Or, \(n=7\)
    Number of terms \(=7\)
  • Question 4
    1 / -0

    If a + b + c = 9 (where a, b, c are real numbers) then the minimum value of a2 + b2 + c2 is?

    Solution
    \(a+b+c=9\)
    For minimum value
    \(a=b=c\)
    \(\Rightarrow 3 a=9\)
    \(\Rightarrow a=\frac{9}{3}\)
    \(\Rightarrow a=3\)
    For minimum value
    \(a=b=c=3\)
    \(\therefore a^{2}+b^{2}+c^{2}\)
    \(\Rightarrow 3^{2}+3^{2}+3^{2}\)
    \(\Rightarrow 9+9+9\)
    \(\Rightarrow 27\)
  • Question 5
    1 / -0
    If \(y=\frac{1}{a-z},\) then \(\frac{d z}{d y}=\)
    Solution
    Here \(z=a-\frac{1}{y}\) p \(\frac{d z}{d y}=\frac{1}{y^{2}}=(a-z)^{2}\)
  • Question 6
    1 / -0
    \(\frac{d}{d x}\left[\cos \left(1-x^{2}\right)^{2}\right]=\)
    Solution
    \(\frac{d}{d x}\left[\cos \left(1-x^{2}\right)^{2}\right]=-\sin \left(1-x^{2}\right)^{2} \frac{d}{d x}\left(1-x^{2}\right)^{2}\)
    \(=4 x\left(1-x^{2}\right) \sin \left(1-x^{2}\right)^{2}\)
  • Question 7
    1 / -0

    The average age of three boys is 15 years. If their ages are in ratio 3 : 5 : 7, the age of the youngest boy is

    Solution
    Sum of ages of three boys = 45 years
    Now, (3x + 5x + 7x) = 45
    ⇒ 15x = 45
    ⇒ x = 3
    So, age of youngest boy = 3x
    = 3 × 3
    = 9 years
  • Question 8
    1 / -0

    If log a/b+log b/a = log(a+b),then:

    Solution
    \(\log \frac{a}{b}+\log \frac{b}{a}=\log (a+b)\)
    \(\Rightarrow \log (a+b)=\log \left(\frac{a}{b} \times \frac{b}{a}\right)=\log 1\)
    So\(, a+b=1\)
  • Question 9
    1 / -0
    If \(y=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots \ldots \infty,\) then \(\frac{d y}{d x}=\)
    Solution
    \(y=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots \ldots \infty^{\mathrm{}} y=e^{x}\)
    respect to \(x,\) we get \(\frac{d y}{d x}=e^{x}=y\)
  • Question 10
    1 / -0
    \(\frac{d}{d x}\left(\tan ^{-1} \frac{\cos x}{1+\sin x}\right)=\)
    Solution
    \(\frac{d}{d x}\left[\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)\right]\)
    \(=\frac{d}{d x}\left[\tan ^{-1}\left(\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}\right)\right]\)
    \(=\frac{d}{d x}\left[\tan ^{-1}\left(\frac{1-\tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)}\right)\right]=\frac{d}{d x}\left[\tan ^{-1} \tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right]=-\frac{1}{2}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now