Here, we have to find the equation of the plane passing through the intersection of the planes \(\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0\) and \(\vec{r} \cdot(\hat{j}+2 \hat{k})=0\) and passing through the point \((2,1,-1) .\)
As we know that, the equation of the plane through the intersection of two planes \(\vec{r} \cdot \overrightarrow{n_{1}}=q_{1}\) and \(\vec{r} \cdot \overrightarrow{n_{2}}=q_{2}\) is given by \(\vec{r} \cdot\left(\overrightarrow{n_{1}}+\lambda \overrightarrow{n_{2}}\right)=q_{1}+\lambda q_{2}\)
Here, \(\overrightarrow{n_{1}}=\hat{i}+3 \hat{j}-\hat{k}, \overrightarrow{n_{2}}=\hat{j}+2 \hat{k}, q_{1}=0\) and \(q_{2}=0\)
So, the equation of the required plane is:
\(\vec{r} \cdot[\hat{i}+(3+\lambda) \hat{j}+(-1+2 \lambda) \hat{k}]=0 \cdot \cdot \cdot \cdot \cdot \cdot (1)\)
\(\because\) The plane represented by (1) passes through the point (2,1,-1) So, \(\vec{r}=2 \hat{i}+\hat{j}-\hat{k}\) will satisfy the equation (1) \(\Rightarrow(2 \hat{i}+\hat{j}-\hat{k}) \cdot(\hat{i}+(3+\lambda) \hat{j}+(-1+2 \lambda) \hat{k})=0\)
\(\Rightarrow 2+3+\lambda+1-2 \lambda=0\)
\(\Rightarrow \lambda=6\)
By substituting \(\lambda=6\) in equation (1) we get, \(\vec{r} \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=0\)
Hence, the equation of the required plane is \(\vec{r} \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=0\)