Self Studies

Mathematics Test - 57

Result Self Studies

Mathematics Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    \(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right) \cup\left(A^{\prime} \cap B^{\prime}\right)\) is equal to:

    Solution

    \(\cup \equiv+(O R)\)

    \(\cap \equiv \cdot(A N D)\)

    \(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right) \cup\left(A^{\prime} \cap B^{\prime}\right)\)

    Or we can write it as,

    \(=A B^{\prime}+A^{\prime} B+A^{\prime} B^{\prime}\) \(=A B^{\prime}+A^{\prime}\left(B+B^{\prime}\right)\) \(=A B^{\prime}+A^{\prime}\left[B+B^{\prime}=1\right]\) \(=A^{\prime}+B^{\prime} \quad\left[A s, A+A^{\prime} B=A+B\right] \quad-\) absorption law.

    Again, write it in result from i.e. \(A^{\prime} \cup B^{\prime}\)

  • Question 2
    1 / -0

    Which one of the following factors does the expansion of the determinant\(\left|\begin{array}{ccc}x & y & 3 \\ x^{2} & 5 y^{3} & 9 \\ x^{3} & 10 y^{3} & 27\end{array}\right|\) contain?

    Solution

    As we know,

    Elementary row or column transformations do not change the value of the determinant of a matrix.

    Given,

    \(\left|\begin{array}{ccc}x & y & 3 \\ x^{2} & 5 y^{3} & 9 \\ x^{3} & 10 y^{3} & 27\end{array}\right|\)

    Apply \(C_{1} \rightarrow C_{1}-C_{3}\)

    \(=\left|\begin{array}{ccc}x-3 & y & 3 \\ x^{2}-9 & 5 y^{3} & 9 \\ x^{3}-27 & 10 y^{3} & 27\end{array}\right|\)

    \(=\left|\begin{array}{ccc}x-3 & y & 3 \\ (\mathrm{x}-3)(x+3) & 5 y^{3} & 9 \\ (\mathrm{x}-3)\left(x^{2}+9+3 x\right) & 10 y^{3} & 27\end{array}\right|\)

    \(=(x-3)\left|\begin{array}{ccc}1 & y & 3 \\ (x+3) & 5 y^{3} & 9 \\ \left(x^{2}+9+3 x\right) & 10 y^{3} & 27\end{array}\right|\)

    \(\therefore(x-3)\) is a factors of the expansion of the determinant.

  • Question 3
    1 / -0

    The differential form of the equation \((y-b)=a \sin x\):

    Solution

    Given equation is \(y - b = a \sin x\)

    There are two constants \(a\) and \(b\) so differentiate two times

    Differentiating w.r.t \(x\)

    \(y^{\prime}=a \cos x\)...(1)

    Again differentiating w.r.t \(x\)

    \(y^{\prime \prime}=-a \sin x\)

    From equation (1), \(a =\frac{ y ^{\prime}}{\cos x }\)

    \(y^{\prime \prime}=-\frac{y^{\prime}}{\cos x} \times \sin x \)

    \(y^{\prime \prime}+y^{\prime} \tan x=0\)

  • Question 4
    1 / -0

    The solution of \(x^2 \frac{d y}{d x}=x^2+x y+y^2\) will be:

    Solution

    \( x^2 \frac{d y}{d x}=x^2+x y+y^2 \)

    \(\Rightarrow \frac{d y}{d x}=1+\frac{y}{x}+\left(\frac{y}{x}\right)^2\)

    Substituting \(y=v x\) and \(\frac{d y}{d x}=v+x \frac{d v}{d x}\)

    \( \Rightarrow v + x \frac{ dv }{ dx }=1+ v + v ^2 \)

    \( \Rightarrow x \frac{ dv }{ dx }=1+ v ^2\)

    Integrating both sides we get,

    \(\int \frac{ dx }{ x }=\int \frac{ dv }{1+ v ^2}\)

    \(\Rightarrow \log x=\tan ^{-1} v + c , c =\) constant of integration

    Putting the value of \(v\) we get,

    \(\therefore \log x =\tan ^{-1} \frac{ y }{ x }+ c\)

  • Question 5
    1 / -0

    If (h, k) are the perpendicular distances from (1, 2, 3) to the x-axis, z-axis respectively, then hk is:

    Solution


  • Question 6
    1 / -0

    Consider the following in respect of a complex number \(Z\):

    1. \(\overline{\left(Z^{-1}\right)}=(\bar{Z})^{-1}\)

    2. \(Z Z^{-1}=|Z|^{2}\)

    Which of the above is/are correct?

    Solution

    Given:

    1. \(\overline{\left( z ^{-1}\right)}=(\overline{ z })^{-1}\)

    Let,\(z=a-i b\)

    \(\Rightarrow z ^{-1}=\frac{1}{ z }=\frac{1}{ a - ib }=\frac{ a + ib }{ a ^{2}+ b ^{2}}\)

    \(\Rightarrow \overline{ z ^{-1}}=\frac{ a - ib }{ a ^{2}+ b ^{2}} \quad \ldots\) (1)

    \(\Rightarrow \overline{ Z }= a + ib\)

    \(\Rightarrow(\overline{ z })^{-1}=\frac{1}{\overline{ z }}=\frac{1}{ a + ib }=\frac{ a - ib }{ a ^{2}+ b ^{2}} \quad \ldots\) (2)

    \(\Rightarrow(\overline{ Z })^{-1}=\frac{1}{\bar{z}}=\frac{1}{a+ i b}=\frac{a- ib }{a^{2}+b^{2}}\)

    from equation (1) and (2)

    statement 1 is correct.

    2. \(z z^{-1}=|z|^{2}\)

    consider \(z=a-i b\)

    \(\Rightarrow z^{-1}=\frac{a+i b}{a^{2}+b^{2}}\)

    \(\Rightarrow z \cdot z^{-1}=(a-i b) \frac{a+i b}{a^{2}+b^{2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1\)

    Statement 2 is not correct.

  • Question 7
    1 / -0

    Find the sum of the series \(2+6+18+54+\ldots+4374 \).

    Solution

    We have to find the sum of the series 2 + 6 + 18 + 54 +....+ 4374.

    Here,

    a = 2

    r = 3

    Let, an = 4374

    As we know that, the the general term of a GP is given by

    \(a_{n}=a r^{n-1}\)

    \(\Rightarrow 4374=(2) \cdot(3)^{n-1}\)

    \(\Rightarrow 3^{n-1}=2187\)

    \(\Rightarrow 3^{n-1}=3^{7}\)

    \(\therefore n-1=7\)

    n = 8

    As we know that, Sum of \(n\) terms of GP,

    \(\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1} \)

    where \(r>1\)

    \(\therefore S_{n}=\frac{2\left(3^{8}-1\right)}{3-1}\)

    \(=3^{8}-1\)

    = 6560

  • Question 8
    1 / -0
    Find the vector equation of the plane passing through the intersection of the planes \(\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0\) and \(\vec{r} \cdot(\hat{j}+2 \hat{k})=0\) and passing through the point \((2,1,-1)\)?
    Solution

    Here, we have to find the equation of the plane passing through the intersection of the planes \(\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0\) and \(\vec{r} \cdot(\hat{j}+2 \hat{k})=0\) and passing through the point \((2,1,-1) .\)

    As we know that, the equation of the plane through the intersection of two planes \(\vec{r} \cdot \overrightarrow{n_{1}}=q_{1}\) and \(\vec{r} \cdot \overrightarrow{n_{2}}=q_{2}\) is given by \(\vec{r} \cdot\left(\overrightarrow{n_{1}}+\lambda \overrightarrow{n_{2}}\right)=q_{1}+\lambda q_{2}\)

    Here, \(\overrightarrow{n_{1}}=\hat{i}+3 \hat{j}-\hat{k}, \overrightarrow{n_{2}}=\hat{j}+2 \hat{k}, q_{1}=0\) and \(q_{2}=0\)

    So, the equation of the required plane is:

    \(\vec{r} \cdot[\hat{i}+(3+\lambda) \hat{j}+(-1+2 \lambda) \hat{k}]=0 \cdot \cdot \cdot \cdot \cdot \cdot (1)\)

    \(\because\) The plane represented by (1) passes through the point (2,1,-1) So, \(\vec{r}=2 \hat{i}+\hat{j}-\hat{k}\) will satisfy the equation (1) \(\Rightarrow(2 \hat{i}+\hat{j}-\hat{k}) \cdot(\hat{i}+(3+\lambda) \hat{j}+(-1+2 \lambda) \hat{k})=0\)

    \(\Rightarrow 2+3+\lambda+1-2 \lambda=0\)

    \(\Rightarrow \lambda=6\)

    By substituting \(\lambda=6\) in equation (1) we get, \(\vec{r} \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=0\)

    Hence, the equation of the required plane is \(\vec{r} \cdot(\hat{i}+9 \hat{j}+11 \hat{k})=0\)

  • Question 9
    1 / -0

    What is the value of \(\operatorname{cosec}^{2} \cot ^{-1}\left(\frac{5}{12}\right) ?\)

    Solution

    Given,

    \(\operatorname{cosec}^{2} \cot ^{-1}\left(\frac{5}{12}\right)\)

    Let \(\theta=\cot ^{-1}\left(\frac{5}{12}\right)\)

    \(\Rightarrow \cot \theta=\frac{5}{12}\)

    Therefore,

    \(\operatorname{cosec}^{2} \cot ^{-1}\left(\frac{5}{12}\right)=\operatorname{cosec}^{2} \theta\)

    \(=1+\cot ^{2} \theta\)\(\quad\quad(\because 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta)\)

    \(=1+\left(\frac{5}{12}\right)^{2}\)

    \(=\frac{169}{144}\)

  • Question 10
    1 / -0

    If five friends received their pocket money as 170, 430, 300, 600 and 470 respectively. Find the mean and mean deviation of the received pocket money.

    Solution

    Given data is \(170,430,300,600\) and 470

    Mean \(\bar{x}=\frac{\text { Sum of all the observations }}{\text { Total number of observations }}\)

    \(=\frac{170+430+300+600+470}{5}\)

    \(=394\)

    For '\(n\)' observation \(x_{1}, x_{2} \ldots \ldots \ldots \ldots . . x_{n}\), the mean deviation about their mean \(\bar{x}\) is given by,

    \(M . D=\frac{\sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|}{N}\) where, \(N\) is the number of observations.

    Mean deviation \(=\frac{|170-394|+|430-394|+|300-394|+|600-394|+|470-394|}{5}\)

    \(=\frac{636}{5}\)

    \(=127.2\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now