Self Studies

Mathematics Test - 58

Result Self Studies

Mathematics Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Evaluate the integral \(\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} d x\).

    Solution

    Given, \(\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1}~ dx\)

    Put \(t=x^{5}+1\)\(\quad \dots (i)\)

    Differentiating with respect to \(x\),

    \(\frac{dt}{dx}=5 x^{4}\)

    Then, \(d t=5 x^{4} d x\)

    New limit to \(eq^{n}(i)\)

    if \(x=1\), \(t=1^{5}+1\)

    \(t=2\)

    Then \(x=-1\), \(t=-1^{5}+1=0\)

    Therefore,

    \(\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1}~ d x\) \(=\int_{0}^{2} \sqrt{t}~ d t\)

    \(=[\frac{2}{3} t^{\frac{3}{2}}]_{0}^{2}\)

    So,

    Put the value of limit,

    \(=\frac{2}{3}\left[\left(2\right)^{\frac{3}{2}}-\left((0\right)^{\frac{3}{2}}\right]\)

    \(=\frac{2}{3}\left[2^{\frac{3}{2}}-0^{\frac{3}{2}}\right]=\frac{2}{3}(2 \sqrt{2})\)

    \(=\frac{4 \sqrt{2}}{3}\)

  • Question 2
    1 / -0
    Let \(f(x)=a x^{2}+b x+c\) where \(a, b, c\) are rational, and \(f: Z \rightarrow Z\) where \(Z\) is the set of integer. Then \(a+b\) is:
    Solution
    \(f: Z \rightarrow Z\) such that\(f(x)=a x^{2}+b x+c,\) where \(a, b, c \in Q\)
    We have to find the value of \(a+b\).
    Now,For \(x=0, f(0) ~= c=\) Integer \([\because f(0) \in Z\) because \(f: Z \rightarrow Z]\)
    \(\Rightarrow {c}\) is an integer.
    For \(x=1, f(1)=a+b+c=k(\) say \()[\) where \(f(1)=k \in Z]\)
    \(\Rightarrow a+b=k-c\)
    since \(k \in Z, c \in Z \Rightarrow k-c \in Z\)
    \(\Rightarrow a+b \in Z\)\(\Rightarrow a+b\) is an integer.
  • Question 3
    1 / -0

    Let \(f(x)\) be a polynomial of degree four having extreme values at \(x=1\) and \(x=2\). If \(\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^2}\right]=3\), then \(f(2)\) is equal to :

    Solution

    \( \lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^2}\right]=3 \\\)

    \( \Rightarrow \lim _{x \rightarrow 0} \frac{f(x)}{x^2}=2\)

    So, \(f(x)\) contain terms in \(x^2, x^3\) and \(x^4\).

    Let \(f(x)=a_1 x^2+a_2 x^3+a_3 x^4\)

    Since \(\lim _{x \rightarrow 0} \frac{f(x)}{x^2}=2 \Rightarrow a_1=2\)

    Hence, \(f(x)=2 x^2+a_2 x^3+a_3 x^4\)

    \(f^{\prime}(x)=4 x+3 a_2 x^2+4 a_3 x^3\)

    As given : \(\mathrm{f}^{\prime}(1)=0\) adn \(\mathrm{f}^{\prime}(2)=0\)

    Hence, \(4+3 a_2+4 a_3=0\)...(i)

    and \(8+12 a_2+32 a_3=0\)...(ii)

    By \(4 \mathrm{x}(\mathrm{i})-(\mathrm{ii})\), we get

    \(16+12 a_2+16 a_3-\left(8+12 a_2+32 a_3\right)=0 \\\)

    \(\Rightarrow 8-16 a_3=0 \Rightarrow a_3=1 / 2\)

    and by eqn. (i), \(4+3 a_2+4 / 2=0 \Rightarrow a_2=-2\)

    \(\Rightarrow \mathrm{f}(\mathrm{x})=2 \mathrm{x}^2-2 \mathrm{x}^3+\frac{1}{2} \mathrm{x}^4\)

    \(f(2)=2 \times 4-2 \times 8+\frac{1}{2} \times 16=0\)

  • Question 4
    1 / -0

    Let \(\mathrm{L}\) denote the set of all straight lines in a plane. Let a relation \(\mathrm{R}\) be defined by \(\mathrm{lRm}\) if and only if \(\mathrm{l}\) is parallel to \(\mathrm{m}, \forall\) \(\mathrm{l,m \in L}\). Then \(\mathrm{R}\) is:

    Solution

    Let's check the given relation for its type one by one.

    Reflexive: Every line is parallel to itself. It means that \(\mathrm{lRl}\) for all \(\mathrm{l \in L}\). Therefore, \(\mathrm{R}\) is reflexive.

    Symmetric: If a line \(\mathrm{l}\) is parallel to \(\mathrm{m}\), then \(\mathrm{m}\) is parallel to l, i.e., if \(\mathrm{lRm}\)

    \(\mathrm{mRl}, \forall \mathrm{~l}, \mathrm{m} \in \mathrm{L}\).

    Therefore, \(\mathrm{R}\) is symmetric.

    Transitive: If a line \(\mathrm{l}\) is parallel to \(\mathrm{m}\) and \(\mathrm{m}\) is parallel to \(\mathrm{k}\), then \(\mathrm{l}\) is also parallel to k. i. e. if \(I R m\) and \(\mathrm{mRk}\)

    \( \Rightarrow I R k, \forall I, \mathrm{~m}, \mathrm{k} \in \mathrm{L}\).

    Therefore, \(\mathrm{R}\) is transitive.

    Since, the relation \(\mathrm{R}\) is reflexive, symmetric and transitive as well, it is an equivalence relation.

  • Question 5
    1 / -0

    What is the value of \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{(1-\cos 2 {x})^{3}}{{x}^{6}}\)?

    Solution

    Given:

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{(1-\cos 2 {x})^{3}}{{x}^{6}}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(2 \sin ^{2} x\right)^{3}}{x^{6}} \quad\left(\because 1-\cos 2 \theta=2 \sin ^{2} \theta\right)\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{8 \sin ^{6} x}{x^{6}}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} 8 \times\left(\frac{\sin x}{x}\right)^{6}\)

    \(=8 \times 1\quad\) \(\left(\because\underset{{{x \rightarrow 0} }}{\lim}\frac{\sin x}{x}=1\right)\)

    \(=8\)

  • Question 6
    1 / -0

    Let the matrix \(A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\) and the matrix \(B_0=A^{49}+2 A^{98}\). If \(B_n=\operatorname{Adj}\left(B_{n-1}\right)\) for all \(n>1\), then \(\operatorname{det}\left(B_4\right)\) is equal to :

    Solution

    \(A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\)

    \(\Rightarrow A^2=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] \times\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\)

    \(\Rightarrow A^3=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=1\)

    Now \(B_0=A^{49}+2 A^{98}=\left(A^3\right)^{16} \cdot A+2\left(A^3\right)^{32} \cdot A^2\)

    \(B_0=A+2 A^2=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 2 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0\end{array}\right]\)

    \(\left|B_0\right|=9\)

    Since, \(B_n=\operatorname{Adj}\left|B_{n-1}\right| \Rightarrow\left|B_n\right|=\left|B_{n-1}\right|^2\)

    Hence \(\left|B_4\right|=\left|B_3\right|^2=\left|B_2\right|^4=\left|B_1\right|^8=\left|B_0\right|^{16}=\left|3^2\right|^{16}=3^{32}\)

  • Question 7
    1 / -0

    The number of ways in which 4 boys and 4 girls can be arranged in a row so, that no two girls and no two boys are together is:

    Solution

    Given that:

    4 boys and 4 girls can be arranged in a row so that no two girls and no two boys are together.

    It means they can sit alternately.

    Case-I: 1st person in the row is a boy.

    \({B}_{1} {G}_{1} {~B}_{2} {G}_{2} {~B}_{3} {G}_{3} {~B}_{4} {G}_{4}\)

    The no. of ways in which the boys can be rearranged among themselves is \(4 !\).

    Similarly, the no. of ways in which the girls can be rearranged among themselves is \(4 !\)

    So, the total number of ways in this case \(=4 ! \times 4 !=(4 !)^{2}\)

    Case-II: 1st person in the row is a girl.

    \({G}_{1} {~B}_{1} {G}_{2} {~B}_{2} {G}_{3} {~B}_{3} {G}_{4} {~B}_{4}\)

    The no. of ways in which the girls can be rearranged among themselves is \(4 ! .\)

    Similarly, the no. of ways in which the boys can be rearranged among themselves is \(4 !\)

    So, the total number of ways in this case \(=4 ! \times 4 !=(4 !)^{2}\)

    Therefore, Total Number of ways \(=(4 !)^{2}+(4 !)^{2}=2(4 !)^{2}\)

  • Question 8
    1 / -0

    Construct a \(3 \times 2\) matrix whose elements are given by \(a _{ ij }=\frac{1}{3}|2 i + j |\).

    Solution
    As we know,
    In general, a \(3 \times 2\) matrix is given by,
    \(A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]\)
    Given,
    \(a _{ ij }=\frac{1}{3}|2 i + j |\)
    Here \( i =1,2,3\) and \( j =1,2 \)
    \(\begin{aligned}& a _{11}=\frac{1}{3}|2+1|=1, a _{12}=\frac{1}{3}|2+2|=\frac{4}{3} \\
    & a _{21}=\frac{1}{3}|4+1|=\frac{5}{3}, a _{22}=\frac{1}{3}|4+2|=\frac{6}{3}=2 \\
    & a _{31}=\frac{1}{3}|6+1|=\frac{7}{3}, a _{32}=\frac{1}{3}|6+2|=\frac{8}{3}
    \end{aligned}
    \)
    So, the required matrix is \(\left[\begin{array}{cc}1 & \frac{4}{3} \\ \frac{5}{3} & 2 \\ \frac{7}{3} & \frac{8}{3}\end{array}\right]\).
     
  • Question 9
    1 / -0

    If a line is perpendicular to the line \(5 x-y=0\) and forms a triangle of area 5 square units with co-ordinate axes, then its equation is:

    Solution

    Given,

    The area of a triangle is 5 square units.

    Equation of line is \(5 x-y=0\)

    The equation of a line perpendicular to a given line is

    \( x+5 y=\lambda\)....(i)

    \(\Rightarrow \frac{x}{\lambda}+\frac{5 y}{\lambda}=1\)

    \(\Rightarrow \frac{x}{\lambda}+\frac{y}{\left(\frac{\lambda}{5}\right)}=1\)

    Area of triangle \(=5\) square units

    Area of triangle = \(\frac{1}{2}×b×h\)

    \(\frac{1}{2} \times \lambda \times \frac{\lambda}{5}=5\)

    \(\Rightarrow \lambda^{2}=50 \)

    \(\Rightarrow\lambda=\pm 5 \sqrt{2}\)

    Put the value of \(\lambda\) in equation (i) we get,

     \(x+5 y=\pm 5 \sqrt{2}\)

    \(\Rightarrow x+5 y \pm 5 \sqrt{2}=0\)

  • Question 10
    1 / -0

    If \(f(x)=X^{5}-20 X^{3}+240 X\) then \(f'(x)\) is:

    Solution

    Given:

    \(f(x)=X^{5}-20 X^{3}+240 X\)

    Differentiate w.r.t \(x\),

    \(f^{\prime}(x)=5 X^{4}-60 X^{2}+240=X^{4}-12 X^{2}+48\)

    For checking whether the function is Monotonically increasing or decreasing put \(X_{1}=-1\)

    \(f^{\prime}\left(X_{1}\right)=(-1)^{4}-12(-1)^{2}+48=1-12+48=37\)

    Now, put \(X_{2}=0\)

    \(f^{\prime}\left(X_{2}\right)=0-0+48=48\)

    Therefore, \(f^{\prime}\left(X_{1}\right) \leq f^{\prime}\left(X_{2}\right)\)

    From the above condition we can assume that given function is Monotonically increasing everywhere.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now