Self Studies
Selfstudy
Selfstudy

Mathematics Test - 59

Result Self Studies

Mathematics Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the area of the region (in sq. units) bounded by the curve \(y^{2}=2 y-x\) and \(y\)-axis.

    Solution

  • Question 2
    1 / -0

    If \(\left|x^{2}-3 x+2\right|>x^{2}-3 x+2\), then which one of the following is correct?

    Solution

  • Question 3
    1 / -0
    The two sides of a \(\Delta \mathrm{ABC}\) are given by vectors \(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}\) and \(\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}}\).
    The length of the median through \(\mathrm{A}\) is:
    Solution

    Using the triangle law for addition of vectors:

    \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}\)

    \(\Rightarrow \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AB}}=(2 \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})-(\overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}})=\overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}}\)

    Let's say that \(A D\) is the median from \(A\).

    \(\therefore \overrightarrow{\mathrm{BD}}=\frac{1}{2} \overrightarrow{\mathrm{BC}}=\frac{1}{2}(\overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})=\frac{1}{2} \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+2 \overrightarrow{\mathrm{k}}\)

    And \(\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BD}}\)

    \(\Rightarrow \overrightarrow{\mathrm{AD}}=(\overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}})+\left(\frac{1}{2} \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}+2 \overrightarrow{\mathrm{k}}\right)=\frac{3}{2} \overrightarrow{\mathrm{i}}+0 \overrightarrow{\mathrm{j}}+2 \overrightarrow{\mathrm{k}}\)

    \(\therefore|\mathrm{AD}|=\sqrt{\left(\frac{3}{2}\right)^{2}+0^{2}+2^{2}}=\sqrt{\frac{9}{4}+4}=\sqrt{\frac{25}{4}}=\frac{5}{2}=2.5\)

  • Question 4
    1 / -0

    If \(\mathrm{A}\) and \(\mathrm{B}\) are two events such that \(\mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{5}\) and \(\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{1}{2}\), then \(\mathrm{P}(\mathrm{A} \mid \mathrm{B})+\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\prime}\right)\) is equal to:

    Solution

  • Question 5
    1 / -0

    If \(Z=1+i\), where \(i=\sqrt{-1}\), then what is the modulus of \(Z+\frac{2}{Z} ?\)

    Solution

    Given,

    \(Z=1+i\)

    We have to find the modulus of \(Z+\frac{2}{Z}\)

    \(\Rightarrow(1+i)+\frac{2}{1+i}\)

    On rationalizing the second term, we get 

    \(\Rightarrow(1+i)+\frac{2}{1+i} \times \frac{1-i}{1-i}\)

    \(\Rightarrow(1+ i )+\frac{2 \times(1- i )}{1- i ^{2}}\)

    \(\Rightarrow(1+ i )+\frac{2 \times(1- i )}{1-(-1)}\)

    \(\Rightarrow(1+ i )+\frac{2 \times(1- i )}{2}\)

    \(\Rightarrow 1+ i +1- i\)

    \(\Rightarrow 2\)

    \(\therefore\) The modulus of \(Z +\frac{2}{ Z }=2\).

  • Question 6
    1 / -0

    Let, \(R=\{(a, b): a, b \in Z\) and \((a+b)\) is even \(\}\), then \(R\) is:

    Solution

    Given here,

    \(R=\{(a, b): a, b \in Z\) and \((a+b)\) is even \(\}\)

    We know that:

    R is an equivalence relation if A is nonempty and R is reflexive, symmetric and transitive.

    Therefore,

    1. Since, \(a+a=2 a\), which is even, so \(R\) is reflexive.

    2. If \(a+b\) is even, then \(b+a\) will also be even. So, \(R\) is symmetric.

    3. Let, \(a=3, b=5\), and \(c=7\), then:

    \(a+b=3+5=8\) (which is even),

    b \(+c=5+7=12\) (which is again even)

    and, \(a+c=3+7=10\) (which is also even)

    So, R is transitive.

    Therefore, \(R\) is an equivalence relation on \(Z\).

  • Question 7
    1 / -0

    The domain of \(\sin ^{-1} 5 x\) is:

    Solution

    Let's say that \(\sin ^{-1} 5 x=\theta\)

    \(\Rightarrow \sin \left(\sin ^{-1} 5 x\right)=\sin \theta \)

    \(\Rightarrow \sin \theta=5 x\)

    Since, \(-1 \leq \sin \theta \leq 1\)

    \(\Rightarrow-1 \leq 5 x \leq 1\)

    \(\Rightarrow-\frac{1}{5} \leq x \leq \frac{1}{5} \)

    \(\Rightarrow x \in\left[-\frac{1}{5}, \frac{1}{5}\right]\)

    The domain of the function is the closed interval \(\left[-\frac{1}{5}, \frac{1}{5}\right]\).

  • Question 8
    1 / -0

    If the chance that a vessel arrives safely at a port is \(\frac{9}{10}\) then what is the chance that out of \(5\) vessels expected at least \(4\) will arrive safely?

    Solution

    The probability that exactly \(4\) vessels arrive safely is, \(={ }^{5} C_{4} \times\left(\frac{9}{10}\right)^{4}\left(\frac{1}{10}\right)\)

    The probability that all \(5\) arrive safely is \(\left(\frac{9}{10}\right)^{5}\)

    The probability that at-least \(4\) vessels arrive safely,

    \(={ }^{5} C_{4} \times\left(\frac{9}{10}\right)^{4}\left(\frac{1}{10}\right)+\left(\frac{9}{10}\right)^{5}\)

    \(=\frac{14 \times 9^{4}}{10^{5}}\)

  • Question 9
    1 / -0
    The differential equation representing the family of curves \(y=a \sin (\lambda x+a)\) is:
    Solution

    Given,

    \(y=a \sin (\lambda x+a) \ldots { (i) }\)

    Now,

    Differentiating both sides by equation \((i)\)

    We get,

    \(\frac{d y}{d x}=\frac{d}{d x}(a \sin (\lambda x+a\)

    \(\Rightarrow \frac{d y}{d x}=a \cos (\lambda x+\alpha) \times \frac{d}{d x}(\lambda x+\alpha)\)

    \(\Rightarrow \frac{d y}{d x}=a \lambda \cos (\lambda x+\alpha)\)

    Again differentiating both sides we get,

    \(\frac{{d}^{2} {y}}{{dx}^{2}}=-{a} \lambda^{2} \sin (\lambda x+{a})\)

    From equation \((i)\) we get,

    \(\frac{d^{2} y}{d x^{4}}=-\lambda^{2} y \)

    \(\therefore \frac{d^{2} y}{d x^{2}}+\lambda^{2} y=0\)

  • Question 10
    1 / -0

    The volume generated by revolving the arc \(y=\sqrt{1+x^{2}}\) lying between \(x=0\) and \(x=4\) about \(x\) - axis is:

    Solution

    Given function:

    \(y=f(x)=\sqrt{1+x^{2}}\) and \(x=0 =\mathrm{a}, ~ x=4 =\mathrm{b}\)

    We know that:

    \(V=\pi \int_{a}^{b}[f(y)]^{2} d y\)

    Therefore,

    Volume, \((V)=\pi \int_{0}^{4}\left(\sqrt{1+x^{2}}\right)^{2} d x\)

    \(=\pi \int_{0}^{4}\left(1+x^{2}\right) d x\)

    \(=\pi\left[x+\frac{x^{3}}{3}\right]_{0}^{4}\)

    \(=\pi\left[(4-0)+\left(\frac{64}{3}-\frac{0}{3}\right)\right]\)

    \(=\pi\left[\frac{12+64}{3}\right]\)

    \(=\frac{76 \pi}{3}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now