Self Studies

Mathematics Test - 6

Result Self Studies

Mathematics Test - 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \({f}(2 {a}-{x})={f}({x})\) and \(\int_{0}^{a} f(x) d x=\lambda\) then \(\int_{0}^{2 a} f(x) d x\) is:

    Solution

    Given:

    \(f(2 a-x)=f(x)\) ......(1)

    \(\int_{0}^{a} f(x) d x=\lambda\) .....(2)

    Using the property (1)

    \(\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x\)

    From equation (1)

    \(\Rightarrow \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x\)

    From equation (2)

    \(\Rightarrow \int_{0}^{2 a} f(x) d x=\lambda+\lambda\)

    \(\Rightarrow \int_{0}^{2 a} f(x) d x=2 \lambda\)

  • Question 2
    1 / -0

    What is the value of the determinant \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\) where \(\mathrm{i}=\sqrt{-1} ?\)

    Solution

    Given determinant is \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\)

    Since, we have,

    \(\mathrm{i}=\sqrt{-1}\)

    \(\mathrm{i}^{2}=-1, \mathrm{i}^{3}=-\mathrm{i}, \mathrm{i}^{4}=1, \mathrm{i}^{6}=-1, \mathrm{i}^{8}=1, \mathrm{i}^{9}=\mathrm{i}, \mathrm{i}^{12}=1\), and \(\mathrm{i}^{15}=-\mathrm{i}\)

    \(=\left|\begin{array}{ccc}\mathrm{i} & -1 & -\mathrm{i} \\ 1 & -1 & 1 \\ \mathrm{i} & 1 & -\mathrm{i}\end{array}\right|\)

    \(=\mathrm{i}(\mathrm{i}-1)+1(-\mathrm{i}-\mathrm{i})-\mathrm{i}(1+\mathrm{i})\)

    \(=i^{2}-i-2 i-i-i^{2}\)

    \(=-4 i\)

  • Question 3
    1 / -0

    What is the number of different messages that can be represented by three a’s and two b’s?

    Solution

    We know that:

    Suppose a set of \(n\) objects has \(n_{1}\) of one kind of object, \(n_{2}\) of a second kind, \(n_{3}\) of a third kind, and, 

    So, on with \(n=n_{1}+n_{2}+n_{3}+\ldots+n_{k}\) then the number of distinguishable permutations of the \(n\) objects is: 

    \(=\frac{n !}{n_{1} ! \times n_{2} ! \times n_{3} ! \ldots \ldots . n_{k} !}\)

    Given: Three a’s and two b’s

    a

    a

    a

    b

    b

    Total number \(=3+2=5\)
    In the set of 5 words has 3 words of one kind and 2 words of the second kind.
    Therefore, number of different messages that can be represented by three a's and two b's, 
    \(=\frac{5 !}{3 ! 2 !}=10\)
     
  • Question 4
    1 / -0

    A bag contains \(2 n+1\) coins, \(n\) coins have tails on both sides, whereas \(n+1\) coins are fair. A coin is picked on random from the bag and tossed. If the probability that toss in tail is \(\frac{31}{42}\), total numbers of coins in the bag are:

    Solution

    Given:

     

    \(\Rightarrow\) Number of coins having tail on both sides \(=n\)

    \(\Rightarrow\) Number of fair coins \(=n+1\)

    According to question,

    \(\Rightarrow\) Probability of getting a tail \(=\frac{31}{42}\)

    \(\Rightarrow P\) (tail) \(=\frac{^nC_1}{^{2n+1}C_1}\times 1+\frac{^{n+1}C_1}{^{2n+1}C_1} \times \frac{1}{2}=\frac{31}{42}\)

    \(\Rightarrow \frac{n}{2 n+1}+\frac{n+1}{2(2 n+1)}=\frac{31}{42}\)

    \(\Rightarrow(3 n+1) \times 21=31(2 n+1)\)

    \(\Rightarrow 63 n+21=62 n+31\)

    \(\Rightarrow n=10\)

    \(\therefore\) Total coins in bag \(=2 n+1=21\)

     

  • Question 5
    1 / -0

    If the feasible region for a solution of linear inequations is bounded, it is called as:

    Solution

    A bounded feasible region will have both a maximum value and a minimum value for the objective function. It is bounded if it can be enclosed in any shape.

    A convex polygon is a simple not self-intersecting closed shape in which no line segment between two points on the boundary ever goes outside the polygon.

    So, the answer is convex polygon.

  • Question 6
    1 / -0

    What is the probability of getting a sum 9 from two throws of a dice?

    Solution

    Given:

    In two throws of a dice, total chances \(n(S)=(6 \times 6)=36\)

    Let \(E\) is the event of getting a sum 9

    \(\therefore E=\{(3,6),(4,5),(5,4),(6,3)\}\)

    \(\Rightarrow n(E)=4 \)

    \(\therefore P(E)=\frac{n(E)}{n(S)}\)

    \( =\frac{4}{36}\Rightarrow\frac{1}{9}\)

  • Question 7
    1 / -0

    If \(\lim _{x \rightarrow 0} \frac{\log (1+\sin x)}{x}=k\), the value of \(k\) is:

    Solution

    Given that: 

    \(\lim _{\mathrm{x} \rightarrow 0} \frac{\log (1+\sin x)}{\mathrm{x}}=\mathrm{k}\)

    Put x = 0, to check form

    \(\lim _{x \rightarrow 0} \frac{\log (1+\sin x)}{x}\)

    \(=\frac{\log (1+0)}{0}\)

    \(=\frac{0}{0}\)

    Applying L’ hospital’s rule as,

    \(\lim _{x \rightarrow a} \frac{\mathrm{f}(x)}{g(x)}=\lim _{x \rightarrow a} \frac{\mathrm{f}^{\prime}(x)}{g^{\prime}(x)}\)

    \(\lim _{x \rightarrow 0} \frac{\log (1+\sin x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\log (1+\sin x))}{\frac{d}{d x}(x)}\)

    \(=\lim _{\mathbf{x} \rightarrow 0} \frac{\frac{1}{1+\sin x} \times \cos x}{1}\)

    \(=\frac{1}{1+\sin 0} \times \cos 0\)

    \(=1\)

    \(\therefore \mathrm{k}=1\)

  • Question 8
    1 / -0
    Find the value of \(y-x\) from the following equation:
    \(2\left[\begin{array}{cc}
    x & 5 \\
    7 & y-3
    \end{array}\right]+\left[\begin{array}{cc}
    3 & -4 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right]\)
    Solution

    Given,
    \(\begin{aligned} 2\left[\begin{array}{cc}
    x & 5 \\
    7 & y-3
    \end{array}\right]+\left[\begin{array}{cc}
    3 & -4 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right] \end{aligned}\)
    \(\begin{aligned}\Rightarrow\left[\begin{array}{cc}
    2 x & 10 \\
    14 & 2 y -6
    \end{array}\right]+\left[\begin{array}{cc}
    3 & -4 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right] \end{aligned}\)
    \(\begin{aligned} \Rightarrow\left[\begin{array}{cc}
    2 x +3 & 6 \\
    15 & 2 y -4
    \end{array}\right]=\left[\begin{array}{cc}
    7 & 6 \\
    15 & 14
    \end{array}\right]
    \end{aligned}
    \)
    As we know that,
    If two matrices \(A\) and \(B\) are equal then their corresponding elements are also equal.
    \(\therefore 2 x+3=7 \)
    \(\Rightarrow 2x=7-3\)
    \(\Rightarrow 2x=4\)
    \(\Rightarrow x=2\)
    And \(2 y-4=14\)
    \(\Rightarrow 2y=14+4\)
    \(\Rightarrow 2y=18\)
    \(\Rightarrow y=9\)
    Now,
    \(y-x=9-2=7\)
    So, the value of \(y-x\) is \(7\).

  • Question 9
    1 / -0

    If \(6 \sin ^{2} x-2 \cos ^{2} x=4\), then find the value of \(\tan x \).

    Solution

    Given,

    \(6 \sin ^{2} x-2 \cos ^{2} x=4\)

    \(\Rightarrow 6 \sin ^{2} x-2 \cos ^{2} x=4 \times 1\)

    As we know that,

    \(\sin ^{2} x+\cos ^{2} x=1\)

    \(\Rightarrow 6 \sin ^{2} x-2 \cos ^{2} x=4\left(\sin ^{2} x+\cos ^{2} x\right)\)

    \(\Rightarrow 6 \sin ^{2} x-2 \cos ^{2} x=4 \sin ^{2} x+4 \cos ^{2} x\)

    \(\Rightarrow 6 \sin ^{2} x-4 \sin ^{2} x=4 \cos ^{2} x+2 \cos ^{2} x\)

    \(\Rightarrow 2 \sin ^{2} x=6 \cos ^{2} x\)

    \(\Rightarrow \tan ^{2} x=3\)

    \(\therefore \tan x=\sqrt{3}\)

  • Question 10
    1 / -0

    Three planes x + y = 0, y + z = 0, and x + z = 0:

    Solution

    Given, 

    Three planes are

    x + y = 0...(i)

    y + z = 0...(ii)

    x + z = 0...(iii)

    Adding these three planes, we get

    2(x + y + z) = 0

    ⇒ x + y + z = 0...(iv)

    Putting value of (x + y) in (iv), we get

    0 + z = 0

    ⇒ z = 0

    Putting value of (y + z) in (iv), we get

    x + 0 = 0

    ⇒ x = 0

    Putting value of (x + z) in (iv), we get

    y + 0 = 0

    ⇒ y = 0

    So, (x, y, z) = (0, 0, 0)

    So, the three planes meet in a unique point.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now