Self Studies

Mathematics Test - 62

Result Self Studies

Mathematics Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of \(1 \div\left[1 \frac{1}{8} \div \frac{\left(3 \frac{1}{5}+\frac{3}{5}\right) \div \frac{8}{5}}{\left\{\frac{5}{8}+\left(\frac{1}{8} \div \frac{1}{3}\right)\right\}}\right]\)
    Solution
    \(\Rightarrow 1 \div\left[1 \frac{1}{8} \div \frac{\left(3 \frac{1}{5}+\frac{3}{5}\right) \div \frac{8}{5}}{\left\{\frac{5}{8}+\left(\frac{1}{8} \div \frac{1}{3}\right)\right\}}\right]\)
    \(\Rightarrow 1 \div\left[\frac{9}{8} \div \frac{\left(\frac{16}{5}+\frac{3}{5}\right) \div \frac{8}{5}}{\left\{\frac{5}{8}+\left(\frac{1}{8} \times \frac{3}{1}\right)\right\}}\right]\)
    \(\Rightarrow 1 \div\left[\frac{9}{8} \div \frac{\frac{19}{5} \times \frac{5}{8}}{\frac{5}{8}+\frac{3}{8}}\right]\)
    \(\Rightarrow 1 \div\left[\frac{9}{8} \times \frac{8}{19}\right.\)
    \(\Rightarrow 1+[9 / 19]\)
    \(\Rightarrow 19 / 9\)
  • Question 2
    1 / -0

    In a lottery, there are 10 prizes and 25 blanks. A lottery is drawn at random. What is the probability of getting a prize?

    Solution
    \(P\) (getting a prize)
    \(=\frac{10}{10+25}\)
    \(=\frac{10}{35}\)
    \(=\frac{2}{7}\)
  • Question 3
    1 / -0

    Two dice are tossed. The probability that the total score is a prime number is:

    Solution
    Clearly, \(n(S)=(6 \times 6)=36\)
    Let \(E=\) Event that the sum is a prime number.Then
    \(E=\{(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),\)
    (4,1),(4,3),(5,2),(5,6),(6,1),(6,5)\}
    \(\therefore n(E)=15\)
    \(\therefore P(E)=\frac{n(E)}{n(S)}\)
    \(=\frac{15}{36}\)
    \(=\frac{5}{12}\)
  • Question 4
    1 / -0
    If \(\frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{c+a}+\frac{x-c^{2}}{a+b}=4(a+b+c),\) then \(x=?\)
    Solution
    \(\frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{c+a}+\frac{x-c^{2}}{a+b}=4(a+b+c)\)
    Note : In such type of question to save your valuable time assume values as per your need which make your calculation easier.
    Assume \(a=1, b=0, c=1\)
    Make sure there will be no \(\left(\frac{0}{0}\right)\) form
    \(\therefore \frac{x-1}{1+0}+\frac{x-0}{1+1}+\frac{x-1}{1+0}=4\)
    \(\Rightarrow x-1+\frac{x}{2}+x-1=4 \times 2\)
    \(\Rightarrow x+\frac{x}{2}+x=8+2\)
    \(\Rightarrow \frac{5 x}{2}=10\)
    \(\Rightarrow x=4\)
    Now put values in options take option
  • Question 5
    1 / -0

    The average monthly salary of 660 workers in a factory is Rs. 380. The average monthly salary of officers is Rs. 2100 and the average monthly salary of the other workers is Rs. 340. Find the number of other workers.

    Solution
    Total salary of 660 workers
    \(=660 \times 380\)
    \(=R s .250800\)
    If other workers be \(x ;\) then,
    \(=[(660-x) \times 2100]+340 x\)
    \(=250800\)
    Or, \(1386000-2100 x+340 x=250800\)
    \(1760 x=1135200\)
    Hence, \(x=\frac{1135200}{1760}=645\)
    Number of other workers \(=645\)
  • Question 6
    1 / -0

    A tank is filled in 5 hours by three pipes A, B and C. The pipe C is twice as fast as B and B is twice as fast as A. How much time will pipe A alone take to fill the tank?

    Solution
    Suppose pipe \(A\) alone takes \(x\) hours to fill the tank. Then, pipes \(B\) and \(C\) will take \(\frac{x}{2}\) and \(\frac{x}{4}\) hours respectively to fill the tank. \(\therefore \frac{1}{x}+\frac{2}{x}+\frac{4}{x}=\frac{1}{5}\)
    \(\Rightarrow \frac{7}{x}=\frac{1}{5}\)
    \(\Rightarrow x=35\) hrs
  • Question 7
    1 / -0
    If \(x \neq 0, y \neq 0\) and \(z \neq 0\) and \(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\) then the relation among \(x, y, z\) is?
    Solution
    \(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\)
    Go through option 4 take \(x=y=z\) \(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\)
    \(\therefore\) Option ' 4 ' is right
  • Question 8
    1 / -0

    A bag contains 4 white, 5 red and 6 blue balls. Three balls are drawn at random from the bag. The probability that all of them are red, is:

    Solution
    Let \(S\) be the sample space Then, \(n(S)=\) number of ways of drawing 3 balls out of 15
    \(={ }^{15} C_{3}\)
    \(=\frac{(15 \times 14 \times 13)}{(3 \times 2 \times 1)}\)
    \(=455\)
    Let \(E=\) event of getting all the 3 red balls
    \(\therefore n(E)={ }^{5} C_{3}={ }^{5} C_{2}\)
    \(=\frac{(5 \times 4)}{(2 \times 1)}=10\)
    \(\therefore P(E)=\frac{n(E)}{n(S)}\)
    \(=\frac{10}{455}\)
    \(=\frac{2}{91}\)
  • Question 9
    1 / -0

    If y=a sinx+b cosx,then y2+(dy/dx)2is a

    Solution
    \(y=a \sin x+b \cos x \quad\) Differentiating with respect
    to \(x,\) we get \(\frac{d y}{d x}=a \cos x-b \sin x \quad\) Now
    \(\left(\frac{d y}{d x}\right)^{2}=(a \cos x-b \sin x)^{2}\)
    \(=a^{2} \cos ^{2} x+b^{2} \sin ^{2} x-2 a b \sin x \cos x \quad\) and
    \(y^{2}=(a \sin x+b \cos x)^{2}\)
    \(=a^{2} \sin ^{2} x+b^{2} \cos ^{2} x+2 a b \sin x \cos x \quad\) So,
    \(\begin{aligned}\left(\frac{d y}{d x}\right)^{2}+y^{2}=a^{2}\left(\sin ^{2} x+\cos ^{2} x\right)+b^{2}\left(\sin ^{2} x+\cos ^{2} x\right) & \text { ( ) } \\ \text { Hence }\left(\frac{d y}{d x}\right)^{2}+y^{2}=\left(a^{2}+b^{2}\right)=\text { constant. } \end{aligned}\)
  • Question 10
    1 / -0

    A man travels equal distances of his journey at 40, 30 and 15 km/h. respectively. Find his average speed for whole journey.

    Solution
    Required average speed \(=\left[\frac{(3 \times 40 \times 30 \times 15)}{\{(40 \times 30)+(40 \times 15)+(30 \times 15)\}}\right]\)
    \(=24 \mathrm{km} / \mathrm{hr}\)
    Alternatively Time taken to traveled \(\frac{1}{3}\) distance of journey with speed \(40 \mathrm{kmph}\) \(=\frac{\left(\frac{1}{3}\right)}{40}=\frac{1}{120}\)
    Time taken to traveled \(\frac{1}{3}\) distance of journey with speed \(30 \mathrm{kmph}\) \(=\frac{\left(\frac{1}{3}\right)}{30}=\frac{1}{90}\)
    Time taken to traveled \(\frac{1}{3}\) distance of journey with speed \(15 \mathrm{kmph}\) \(=\frac{\left(\frac{1}{3}\right)}{15}=\frac{1}{45}\)
    Total time taken
    \(=\left(\frac{1}{120}\right)+\left(\frac{1}{90}\right)+\left(\frac{1}{45}\right)\)
    \(=\frac{45}{1080}\)
    Average speed \(=\frac{\text { Total distance traveled }}{\text { Total time taken }}\)
    \(=\frac{1}{\left(\frac{45}{1080}\right)}\)
    \(=24 \mathrm{kmph}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now