Self Studies

Mathematics Test - 65

Result Self Studies

Mathematics Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of following is, cos24° + cos55° + cos125° + cos204° + cos300° ?

    Solution
    The value of \(, \cos 24^{\circ}+\cos 55^{\circ}+\cos 125^{\circ}+\cos 204^{\circ}+\cos 300^{\circ}\)
    We know that, cos \(\left(180^{\circ} \pm \theta\right)\)
    \(=-\cos \theta\)
    \(\Rightarrow \cos 24^{\circ}\)
    \(+\cos 55^{\circ}\)
    \(+\cos \left(180^{\circ}-55^{\circ}\right)\)
    \(+\cos \left(180^{\circ}-24^{\circ}\right)\)
    \(+\cos\)
    \(\left(360^{\circ}-60^{\circ}\right)\)
    \(\Rightarrow \cos 24^{\circ}\)
    \(+\cos 55^{\circ}\)
    \(-\cos 55^{\circ}\)
    \(-\cos 24^{\circ}\)
    \(+\cos 60^{\circ}\)
    \(\Rightarrow \cos 60^{\circ}\)
    \(\Rightarrow \frac{1}{2}\)
  • Question 2
    1 / -0
    \(\frac{d}{d x}\left(x^{2} \sin \frac{1}{x}\right)=\)
    Solution
    \(\frac{d}{d x}\left(x^{2} \sin \frac{1}{x}\right)=x^{2} \cos \left(\frac{1}{x}\right) \frac{d}{d x}\left(\frac{1}{x}\right)\)
    \(+2 x \sin \left(\frac{1}{x}\right)\)
    \(=-\frac{1}{x^{2}} \cdot x^{2} \cos \left(\frac{1}{x}\right)+2 x \sin \left(\frac{1}{x}\right)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)\)
  • Question 3
    1 / -0

    The differential coefficient of a+ logx. sinx is

    Solution
    Let \(y=a^{x}+\log x \cdot \sin x \quad\) Differentiating w.r.t. \(x\)
    we get \(\frac{d y}{d x}=a^{x} \log _{e}(a)+\frac{1}{x} \sin x+\log x \cdot \cos x\)
  • Question 4
    1 / -0

    A train covers the first 16 km at a speed of 20 km per hour another 20 km at 40 km per hour and the last 10 km at 15 km per hour. Find the average speed for the entire journey.

    Solution
    Average speed \(=\frac{\text { total distance covered }}{\text { total time }}\) Total Distance
    \(=(16+20+10)=46 \mathrm{km}\)
    Time taken
    \(=\left(\frac{16}{20}\right)+\left(\frac{20}{40}\right)+\left(\frac{10}{15}\right)\)
    \(=\frac{59}{30}\)
    Average speed
    \(=\frac{46 \times 30}{59}\)
    \(=23 \frac{23}{59} \mathrm{km} / \mathrm{hr}\)
  • Question 5
    1 / -0

    A card is drawn from a pack of 52 cards. The probability of getting a queen of club or a king of heart is:

    Solution
    Here, \(n(S)=52\) Let \(E=\) event of getting a queen of club or a king of heart Then \(n(E)=2\)
    \(\therefore P(E)=\frac{n(E)}{n(S)}\)
    \(=\frac{2}{52}\)
    \(=\frac{1}{26}\)
  • Question 6
    1 / -0

    If x = 3t, y = 1/2(t + 1), then the value of t for which x = 2y is?

    Solution
    \(x=3 t \ldots \ldots(i)\)
    \(y=\frac{1}{2}(t+1)\)
    \(x=2 y\)
    \(\quad \Rightarrow x=2\)
    \(\quad \times \frac{1}{2}(t+1)\)
    \(\quad \Rightarrow x=t+1 \ldots\)
    \(\quad \ldots .(i i)\)
    \(\therefore 3 t=t+1\)
    (From equation
    (i) and (ii))
    \(\Rightarrow 2 t=1\)
    \(\Rightarrow t=\frac{1}{2}\)
  • Question 7
    1 / -0

    The first term of an Arithmetic Progression is 22 and the last term is -11. If the sum is 66, the number of terms in the sequence are:

    Solution
    Number of terms \(=n\) (let) First term (a) \(=22\) Last term \((\mathrm{l})=-11\)
    Sum \(=66\)
    Sum of an AP is given by:
    \(=\) Number of terms \(\times\left\{\frac{(\text { First term }+\text { Last term })}{2}\right\}\) \(66=\mathbf{n} \times\left\{\frac{(\mathbf{a}+1)}{2}\right\}\)
    \(66=n \times \frac{(22-11)}{2}\)
    \(66=\mathrm{n} \times\left(\frac{11}{2}\right)\)
    \(\mathrm{n}=\frac{(66 \times 2)}{11}\)
    \(\mathbf{n}=12\)
    No. of terms \(=12\)
  • Question 8
    1 / -0

    If A = tan11°. tan29°, B = 2cot61°. cot79° then -

    Solution
    \(\Leftrightarrow \frac{A}{B}=\frac{\tan 11^{\circ} \cdot \tan 29^{\circ}}{2 \cot 61^{\circ} \cdot \cot 79^{\circ}}\)
    \(\Leftrightarrow \frac{A}{B}=\frac{\tan 11^{\circ} \tan 29^{\circ}}{2\left[\cot \left(90^{\circ}-29^{\circ}\right) \cdot \cot \left(90^{\circ}-11^{\circ}\right)\right]}\)
    \(\Leftrightarrow \frac{A}{B}=\frac{\tan 11^{\circ} \cdot \tan 29^{\circ}}{2 \tan 11^{\circ} \cdot \tan 29^{\circ}}\)
    \(\Leftrightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{1}{2}\)
    \(\Leftrightarrow 2 \mathrm{A}=\mathrm{B}\)
  • Question 9
    1 / -0

    After striking the floor, a rubber ball rebounds to 4/5th of the height from which it has fallen. Find the total distance that it travels before coming to rest if it has been gently dropped from a height of 120 metres.

    Solution
    \(\frac{a}{(1-r)}\)
    Now, \(\left[\left\{\frac{120}{\left(\frac{1}{5}\right)}\right\}+\left\{\frac{96}{\left(\frac{1}{5}\right)}\right\}\right]\)
    \(=1080 \mathrm{m}\)
  • Question 10
    1 / -0

    There are 10 points in a plane out of which 4 are collinear. Find the number of triangles formed by the points as vertices.

    Solution
    The number of triangle can be formed by 10 points \(={ }^{10} \mathrm{C}_{3}\)
    Similarly, the number of triangle can be formed by 4 points when no one is collinear \(={ }^{4} \mathrm{C}_{3}\)
    In the question, given 4 points are collinear, Thus, required number of triangle can be formed,
    \(={ }^{10} \mathrm{C}_{3}-{ }^{4} \mathrm{C}_{3}\)
    \(=120-4\)
    \(=116\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now