Self Studies

Mathematics Test - 66

Result Self Studies

Mathematics Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If tan 9°=p/q, then the value of sec281°1+cot281° is ?

    Solution
    \(\tan 9^{\circ}=\frac{p}{q}\)
    \(\Rightarrow \frac{\sec ^{2} 81^{\circ}}{1+\cot ^{2} 81^{\circ}}\)
    \(\Rightarrow \frac{\sec ^{2} 81^{\circ}}{\operatorname{cosec}^{2} 81^{\circ}}\)
    \(\Rightarrow \frac{1}{\cos ^{2} 81^{\circ}}\)
    \(\Rightarrow \sin ^{2} 81^{\circ}\)
    \(\Rightarrow \tan ^{2} 81^{\circ}\)
    \(\Rightarrow \tan ^{2}\left(90^{\circ}-9^{\circ}\right)\)
    \(\Rightarrow \cot ^{2} 9^{\circ}\)
    \(\Rightarrow \frac{q^{2}}{p^{2}}\)
  • Question 2
    1 / -0

    Two pipes can fill a tank in 20 and 24 minutes respectively and a waste pipe can empty 3 gallons per minute. All the three pipes working together can fill the tank in 15 minutes. The capacity of the tank is:

    Solution
    Work done by the waste pipe in 1 minute \(=\frac{1}{15}-\left(\frac{1}{20}+\frac{1}{24}\right)\)
    \(=\left(\frac{1}{15}-\frac{11}{120}\right)\)
    \(=-\frac{1}{40} \quad[-v e \text { sign means emptying }]\)
    \(\therefore\) Volume of \(\frac{1}{40}\) part \(=3\) gallons Volume of whole
    \(=(3 \times 40)\) gallons
    \(=120\) gallons
  • Question 3
    1 / -0

    If the fifth term of a GP is 81 and first term is 16, what will be the 4th term of the GP?

    Solution
    \(5^{t h}\) term of \(\mathrm{GP}\)
    \(=a r^{5-1}\)
    \(=16 \times r^{4}\)
    \(=81\)
    \(\mathrm{Or}, r=\left(\frac{81}{16}\right)^{\frac{1}{4}}=\frac{3}{2}\)
    \(4^{t h}\) term of \(\mathrm{GP}\)
    \(=a r^{4-1}\)
    \(=16 \times\left(\frac{3}{2}\right)^{3}\)
    \(=54\)
  • Question 4
    1 / -0

    If log10 2 = 0.3010, then log2 10 is equal to:

    Solution
    \(\log _{2} 10\)
    \(=\frac{1}{\log _{10} 2}\)
    \(=\frac{1}{0.3010}\)
    \(=\frac{10000}{3010}\)
    \(=\frac{1000}{301}\)
  • Question 5
    1 / -0

    In a boat there are 8 men whose average weight is increased by 1 kg when 1 man of 60 kg is replaced by a new man. What is weight of new comer?

    Solution
    Member in group × age increased = difference of replacement
    Or, 8 × 1 = new comer - man going out
    Or, new comer = 8 + 60;
    Or, new comer = 68 years.
  • Question 6
    1 / -0

    If 7sin2θ + 3cos2θ = 4, (0° ≤ θ ≤ 90°), then the value of θ is?

    Solution
    \begin{array}{l}
    7 \sin ^{2} \theta \\
    +3 \cos ^{2} \theta=4 \\
    \Rightarrow 7 \sin ^{2} \theta \\
    +3\left(1-\sin ^{2} \theta\right) \\
    =4 \\
    \Rightarrow 7 \sin ^{2} \theta+3 \\
    -3 \sin ^{2} \theta=4 \\
    \Rightarrow 4 \sin ^{2} \theta=1 \\
    \Rightarrow \sin ^{2} \theta=\frac{1}{4} \\
    \Rightarrow \sin \theta=\frac{1}{2} \\
    =\sin 30^{\circ} \\
    \theta=30^{\circ} \\
    =\frac{\pi}{6} \\
    {\left[\because \pi^{c}=180^{\circ}\right]}
    \end{array}
  • Question 7
    1 / -0

    If log105+log10(5x+1)= log10(x+5)+1,then x is equal to :

    Solution
    \(\Rightarrow \log _{10} 5+\log _{10}(5 x+1)=\log _{10}(x+5)+1\)
    \(\Rightarrow \log _{10} 5+\log _{10}(5 x+1)=\log _{10}(x+5)+1\)
    \(\Rightarrow \log _{10}[5(5 x+1)]=\log _{10}[10(x+5)]\)
    \(\Rightarrow 5(5 x+1)=10(x+5)\)
    \(\Rightarrow 5 x+1=2 x+10\)
    \(\Rightarrow 3 x=9\)
    \(\Rightarrow x=3\)
  • Question 8
    1 / -0

    From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?

    Solution
    Let S be the sample space Then, \(n(S)={ }^{52} C_{2}\)
    \(=\frac{(52 \times 51)}{(2 \times 1)}\)
    \(=1326\)
    Let \(E=\) event of getting 2 kings out of 4 \(\therefore n(E)={ }^{4} C_{2}=\frac{(4 \times 3)}{(2 \times 1)}=6\)
    \(\therefore P(E)=\frac{n(E)}{n(S)}\)
    \(=\frac{6}{1326}\)
    \(=\frac{1}{221}\)
  • Question 9
    1 / -0

    If a2 + b2 + 4c2 = 2(a + b - 2c) - 3 and a, b, c are real, then the value of (a2 + b2 + c2) is?

    Solution
    \(a^{2}+b^{2}+4 c^{2}=2(a+b-2 c)-3\)
    \(\Rightarrow a^{2}+b^{2}+4 c^{2}-2 a-2 b+4 c+3=0\)
    \(\Rightarrow a^{2}-2 a+1+b^{2}-2 b+1+4 c^{2}+4 c+1=0\)
    \(\Rightarrow(a-1)^{2}+(b-1)^{2}+(2 c+1)^{2}=0\)
    \(\therefore a-1=0 a=1\)
    \(b-1=0 b=1\)
    \(2 c+1=0 c=\frac{1}{2}\)
    \(\therefore a^{2}+b^{2}+c^{2}\)
    \(\Rightarrow 1+1+\frac{1}{4}\)
    \(\Rightarrow 2+\frac{1}{4}\)
    \(\Rightarrow \frac{9}{4}\)
    \(\Rightarrow 2 \frac{1}{4}\)
  • Question 10
    1 / -0

    The number of positive integers which can be formed by using any number of digits from 0, 1, 2, 3, 4, 5 without repetition.

    Solution
    One digit positive numbers = 5
    Two digit positive numbers = 25
    Three digit positive numbers = 100
    4 digit positive numbers = 300
    5 digit positive numbers = 600
    Six digit positive numbers = 600
    Total positive numbers,
    = 5 + 25 + 100 + 300 + 600 + 600
    = 1630
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now