Self Studies

Mathematics Test - 7

Result Self Studies

Mathematics Test - 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The area of the region bounded by the curve \(y=\sqrt{16-\mathrm{x}^{2}}\) and \(\mathrm{x}\)-axis is:

    Solution

    \(y=\sqrt{16-x^{2}}\) and \(x\)-axis

     At \(x\)-axis, \(y\) will be zero

    \(y=\sqrt{16-x^{2}}\)

    \(\Rightarrow 0=\sqrt{16-x^{2}}\)

    \(\Rightarrow 16-x^{2}=0\)

    \(\Rightarrow x^{2}=16\)

    \(\therefore x=\pm 4\)

    So, the intersection points are (4, 0) and (−4, 0)


    Area of the curve, \(\mathrm{A}=\int_{-4}^{4} \sqrt{16-\mathrm{x}^{2}} \mathrm{dx} \) \(\because \int (\sqrt{a^2-x^2})= \frac{x} {2} \sqrt{a^2-x^2}+ \frac{a^2} {2}~ \text{sin}^{-1} \frac{x}{4}\)

    \(=\left[\frac{x}{2} \sqrt{4^{2}-x^{2}}+\frac{4^{2}}{2} \sin ^{-1} \frac{x}{4}\right]_{-4}^{4}\)

    \(=\left[\frac{4}{2} \sqrt{4^{2}-4^{2}}+\frac{4^{2}}{2} \sin ^{-1} \frac{4}{4}\right]-\left[\frac{-4}{2} \sqrt{4^{2}-(-4)^{2}}+\frac{4^{2}}{2} \sin ^{-1} \frac{-4}{4}\right]\)

    \(=8 \frac{\pi}{2}+8 \frac{\pi}{2}\) \(=8 \pi\) sq. units

  • Question 2
    1 / -0

    The solution of \(|\frac2{(x-4)}|>1\) where \(x \neq 4\) is:

    Solution

    Given,

    \(|\frac2{(x-4)}|>1\)

    \(\Rightarrow \frac2{|x-4|}>1\)

    \(\Rightarrow 2>|x-4|\)

    \(\Rightarrow|x-4|<2\)

    \(\Rightarrow-2

    \(\Rightarrow-2+4

    \(\Rightarrow 2

    \(\Rightarrow x \in(2,6)\), where \(x \neq 4\)

    \(\Rightarrow x \in(2,4) \cup(4,6)\)

  • Question 3
    1 / -0

    A vector \(\vec{r}=a \hat{i}+b \hat{j}\) is equally inclined to both \(x\) and \(y\) axes. If the magnitude of the vector is \(2\) units, then what are the values of \(a\) and \(b\) respectively?

    Solution

    Given: Vector \(\vec{r}=a \hat{i}+b \hat{j}\) is equally inclined to both \(x\) and \(y\) axes and the magnitude of the vector is \(2\) units.

    i.e.,\(|\vec{r}|=2\)

    \(\Rightarrow \sqrt{a^{2}+b^{2}}=2\)

    \(\Rightarrow a^{2}+b^{2}=4 \quad \ldots\) (1)

    \(\because\) The vector \(\vec{r}=a \hat{i}+b \hat{j}\) is equally inclined to both \(x\) and \(y\) axes

    Let \(\theta\) be the angle between the vector \(\vec{r}=a \hat{i}+b \hat{j}\) and both the \(x\) and \(y\) axes.

    \(\Rightarrow \cos \theta=\frac{a}{2}=\frac{b}{2} \)

    \(\Rightarrow a = b\)

    So, by substituting \(a=b\) in equation (1), we get

    \(\Rightarrow 2 b^{2}=4 \Rightarrow b=\sqrt{2}\)

    So, \(a=b=\sqrt{2}\)

  • Question 4
    1 / -0

    Solution

  • Question 5
    1 / -0

    The constraints \(-x_{1}+x_{2} \leq 1, -x_{1}+3 x_{2} \leq 9\) and \(x_{1}, x_{2} \geq 0\) defines on:

    Solution

    Given,

    The constraints \(-x_{1}+x_{2} \leq 1, -x_{1}+3 x_{2} \leq 9\) and \(x_{1}, x_{2} \geq 0\)

    By drawing these equations, we get 


    Thus we can say that the constraints \(-x_{1}+x_{2} \leq 1, -x_{1}+3 x_{2} \leq 9\) and \(x_{1}, x_{2} \geq 0\) defines on unbounded feasible space because in the graph shaded area is not enclosed by these given lines.

  • Question 6
    1 / -0

    Let \(R\) be a relation defined as \(R=\left\{(a, b): a^{2} \geq b\right.\), where \(a\) and \(b \in Z\}\). Then, relation \(R\) is a/an:

    Solution

    Given that:

    \(R=\left\{(a, b): a^{2} \geq b\right\}\)

    As we know:

    A relation R on a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

    We know that:

    \(\mathrm{a}^{2} \geq \mathrm{a}\)

    Therefore, \((\mathrm{a}, \mathrm{a}) \in \mathrm{R}\), for all \(\mathrm{a} \in \mathrm{Z}\).

    Thus, relation \(\mathrm{R}\) is reflexive.

    Let \((\mathrm{a}, \mathrm{b}) \in \mathrm{R}\)

    \(\Rightarrow a^{2} \geq b\) but \(b^{2} \ngeq a\) for all \(a, b \in Z\).

    So, if \((a, b) \in R\), then it does not implies that \((b, a)\) also belongs to \(\mathrm{R}\).

    Thus, relation \(\mathrm{R}\) is not symmetric.

    Now, let \((a, b) \in R\) and \((b, c) \in R\).

    \(\Rightarrow a^{2} \geq b\) and \(b^{2} \geq c\)

    This does not implies that \(\mathrm{a}^{2} \geq \mathrm{c}\), therefore \((\mathrm{a}, \mathrm{c})\) does not belong to \(\mathrm{R}\) for all \(\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}\).

    Thus, relation \(\mathrm{R}\) is not transitive.

  • Question 7
    1 / -0

    If \(x\) is a Poisson random variate with mean \(3\) , then \(P\{|x-3|<1\}\) will be _______.

    Solution

    Concept:

    Poisson distribution formula,

    \(P(x)=\frac{e^{-\lambda} \lambda^{x}}{x !}\)

    where \(\lambda=\) mean value of occurrence within an interval

    \(P(x)=\) probability of \(x\) occurrence within an interval

    Calculation:

    Mean \((\lambda)=3, x=3\)

    We need to find \(P\{|x-3|<1\}\),

    After simplifying we get \(P(2

    So between \(2\) and \(4\), only one integer value possible is \(3\).

    \(\Rightarrow P\{|x-3|<1\}=P(3)\)

    \(P(x)=\frac{e^{-\lambda} \lambda^{x}}{x !}\)

    \(\Rightarrow P(3)=\frac{e^{-3} 3^{3}}{3 !}\)

    \(=\frac{e^{-3}(3 \times 3 \times 3)}{3 \times 2 \times 1}\)

    \(=\left(\frac{9}{2}\right) e^{-3}\)

  • Question 8
    1 / -0

    Find the distance of the point (2,1,0) from the plane \(2 x+y+2 z+5=0\)?

    Solution

    To find the distance of the point (2,1,0) from the plane \(2 x+y+2 z+5=0\)

    The distance between the point and the plane is given by \(\left|\frac{A x_{1}+B y_{1}+C z_{1}-d}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|\)

    Here, \(x_{1}=2, y_{1}=1\) and \(z_{1}=0\)

    So, the distance of the given point form the given plane \(=\left|\frac{2 \times 2+1 \times 1+2 \times 0+5}{\sqrt{2^{2}+(1)^{2}+(2)^{2}}}\right|\)

    \(=\left|\frac{10}{\sqrt{9}}\right|\)

    So, the distance between the plane and the point is \(\frac{10}{3}\) units.

  • Question 9
    1 / -0

    What is the general solution of the differential equation ydx – (x + 2y2) dy = 0?

    Solution

    Concept:

    Solution of Linear Differential equation:

    If the D.E. has a form of\(\frac{d x}{d y}+P x=Q\)then, where P and Q are functions of y.

    The solution is given as,\(\mathrm{x} \times \mathrm{I} . \mathrm{F} .=\int \mathrm{I} . \mathrm{F} . \times \mathrm{Qdy}+\mathrm{c}\)

    where, I.F. is integrating factor which is given as,

    I. F. \(=e^{\int P d y}\)

    Calculation:

    Given:\(y d x-\left(x+2 y^{2}\right) d y=0\)

    \(\mathrm{y} \frac{\mathrm{dx}}{\mathrm{dy}}=\mathrm{x}+2 \mathrm{y}^{2}\)

    \(\Rightarrow \frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\mathrm{x}}{\mathrm{y}}+2 \mathrm{y}\)

    \(\Rightarrow \frac{\mathrm{dx}}{\mathrm{dy}}-\frac{\mathrm{x}}{\mathrm{y}}=2 \mathrm{y}\)

    Differential equation is in form of,\(\frac{d x}{d y}+P x=Q\)

    Integrating factor,I. F. \(=e^{\int P d y}\)

    I.F. \(=e^{\int-\frac{1}{y} d y}\)

    \(\Rightarrow\) I. F. \(=e^{-\ln y}\)

    \(\Rightarrow\) I.F. \(=\frac{1}{y}\)

    Differential equation is given as,

    \(x \times \frac{1}{y}=\int \frac{1}{y} \times(2 y) d y+c\)

    \(\Rightarrow \frac{x}{y}=2 y+c\)

    \(\Rightarrow x=2 y^{2}+c y\)

  • Question 10
    1 / -0

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now