\(L_1=\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=\lambda\)

\(\mathrm{M}(\lambda, 1+2 \lambda, 2+3 \lambda)\)
\(\overrightarrow{\mathrm{PM}}=(\lambda-1) \hat{\mathrm{i}}+(1+2 \lambda) \hat{\mathrm{j}}+(3 \lambda-5) \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{PM}} \text { is perpendicular to line } \mathrm{L}_1\)
\(\overrightarrow{\mathrm{PM}} \cdot \overrightarrow{\mathrm{b}}=0 \quad(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})\)
\(\Rightarrow \lambda-1+4 \lambda+2+9 \lambda-15=0\)
\(14 \lambda=14 \Rightarrow \lambda=1\)
\(\therefore \mathrm{M}=(1,3,5)\)
\(\overrightarrow{\mathrm{Q}}=2 \overrightarrow{\mathrm{M}}-\overrightarrow{\mathrm{P}}[\mathrm{M} \text { is midpoint of } \overrightarrow{\mathrm{P}} \& \overrightarrow{\mathrm{Q}}]\)
\(\overrightarrow{\mathrm{Q}}=2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}-\hat{\mathrm{i}}-7 \hat{\mathrm{k}}\)
\(\vec{Q}=\hat{i}+6 \hat{j}+3 \hat{k}\)
\(\vec{Q}=\hat{i}+6 \hat{j}+3 \hat{k}\)
\(\therefore(\alpha, \beta, \gamma)=(1,6,3)\)
Required line having direction cosine (l,m,n)
l2+m2+n2=1
\(\Rightarrow l^2+\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{\sqrt{2}}\right)^2=1\)
\(l^2=\frac{1}{4}\)
∴l= \(\frac{1}{2}\)[Line make acute angle with x-axis]
Equation of line passing through (1,6,3) will be
\(\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\mu\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}\right)\)
Option (3) satisfying for µ=4