Self Studies

Mathematics Test - 8

Result Self Studies

Mathematics Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Evaluate \(\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan 2 x}{{e}^{2 x}-1}\)

    Solution

    We know that:

    \(\underset{{{x \rightarrow a}}}{\lim}\left[\frac{f(x)}{g(x)}\right]=\frac{\underset{{{x \rightarrow a}}}{\lim}f(x)}{\underset{{{x \rightarrow a}}}{\lim}g(x)}\), provided \(\underset{{{x \rightarrow a}}}{\lim} g(x) \neq 0\) 

    Given that:

    \(\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan 2 x}{e^{2 x}-1}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{\frac{\tan 2 x}{2 x} \times 2 x}{\frac{e^{2 x}-1}{2 x} \times 2 x}\)

    \(=\frac{\underset{{{x \rightarrow 0}}}{\lim} \frac{\tan 2 x}{2 x}}{\underset{{{x \rightarrow 0}}}{\lim} \frac{e^{2 x}-1}{2 x}}\)

    As we know that:

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{\tan {x}}{{x}}=1\) 

    and, \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{{e}^{x}-1}{{x}}=1\)

    Therefore, 

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{\tan 2 {x}}{2 {x}}=1\) 

    and, \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{{e}^{2 x}-1}{2 {x}}=1\)

    Therefore, 

    \(\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\tan 2 {x}}{{e}^{2 x}-1}=\frac{1}{1}=1\)

  • Question 2
    1 / -0

    Let the image of the point (1,0,7in the line x1=y-12=z-23 be the point (α,β,γ). Then which one of the following points lies on the line passing through (α,β,γand making angles 2π3and3π4 with y-axis and z-axis respectively and an acute angle with x-axis?

    Solution

    \(L_1=\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=\lambda\)

    \(\mathrm{M}(\lambda, 1+2 \lambda, 2+3 \lambda)\)

    \(\overrightarrow{\mathrm{PM}}=(\lambda-1) \hat{\mathrm{i}}+(1+2 \lambda) \hat{\mathrm{j}}+(3 \lambda-5) \hat{\mathrm{k}}\)

    \(\overrightarrow{\mathrm{PM}} \text { is perpendicular to line } \mathrm{L}_1\)

    \(\overrightarrow{\mathrm{PM}} \cdot \overrightarrow{\mathrm{b}}=0 \quad(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})\)

    \(\Rightarrow \lambda-1+4 \lambda+2+9 \lambda-15=0\)

    \(14 \lambda=14 \Rightarrow \lambda=1\)

    \(\therefore \mathrm{M}=(1,3,5)\)

    \(\overrightarrow{\mathrm{Q}}=2 \overrightarrow{\mathrm{M}}-\overrightarrow{\mathrm{P}}[\mathrm{M} \text { is midpoint of } \overrightarrow{\mathrm{P}} \& \overrightarrow{\mathrm{Q}}]\)

    \(\overrightarrow{\mathrm{Q}}=2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}-\hat{\mathrm{i}}-7 \hat{\mathrm{k}}\)

    \(\vec{Q}=\hat{i}+6 \hat{j}+3 \hat{k}\)

    \(\vec{Q}=\hat{i}+6 \hat{j}+3 \hat{k}\)

    \(\therefore(\alpha, \beta, \gamma)=(1,6,3)\)

    Required line having direction cosine (l,m,n)

    l2+m2+n2=1

    \(\Rightarrow l^2+\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{\sqrt{2}}\right)^2=1\)

    \(l^2=\frac{1}{4}\)

    l= \(\frac{1}{2}\)[Line make acute angle with x-axis]

    Equation of line passing through (1,6,3will be

    \(\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\mu\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}\right)\)

    Option (3) satisfying for µ=4

  • Question 3
    1 / -0

    The distance of the point \(\mathrm{Q}(0,2,-2)\) form the line passing through the point \(P(5,-4,3)\) and perpendicular to the lines \(\vec{r}=(-3 \hat{i}+2 \hat{k})+ \lambda(2 \hat{i}+3 \hat{j}+5 \hat{k}), \quad \lambda \in \mathbb{R}\) and \(\vec{r}=(\hat{i}-2 \hat{j}+\hat{k})+\mu(-\hat{i}+3 \hat{j}+2 \hat{k}), \mu \in \mathbb{R}\) is:

    Solution

    A vector in the direction of the required line can be obtained by cross product of

    \(\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ -1 & 3 & 2\end{array}\right|\)

    \( =-9 \hat{i}-9 \hat{j}+9 \hat{k}\)

    Required line,

    \(\overrightarrow{\mathrm{r}}=(5 \hat{i}-4 \hat{j}+3 \hat{k})+\lambda(-9 \hat{i}-9 \hat{j}+9 \hat{k}) \\\)

    \(\vec{r}=(5 \hat{i}-4 \hat{j}+3 \hat{k})+\lambda(\hat{i}+\hat{j}-\hat{k})\)

    Now distance of (0,2,2)

    \(\mathrm{P} \cdot \mathrm{V} \text { of } \mathrm{P} \equiv(5+\lambda) \hat{i}+(\lambda-4) \hat{\mathrm{j}}+(3-\lambda) \hat{\mathrm{k}} \\\)

    \( \overrightarrow{\mathrm{AP}}=(5+\lambda) \hat{i}+(\lambda-6) \hat{\mathrm{j}}+(5-\lambda) \hat{\mathrm{k}} \\\)

    \( \overrightarrow{\mathrm{AP}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})=0 \\\)

    \( 5+\lambda+\lambda-6-5+\lambda=0 \\\)

    \( \lambda=2 \\\)

    \( |\overrightarrow{\mathrm{AP}}|=\sqrt{49+16+9} \\\)

    \( |\overrightarrow{\mathrm{AP}}|=\sqrt{74}\)

     

  • Question 4
    1 / -0

    In how many ways can a team of 5 players be selected from 8 players so as not to include a particular player?

    Solution

    We know that:

    \({ }^{n} C_{r}=\frac{n !}{r !(n-r) !}\)

    A particular player should not be included,

    We have to select 5 players from (8 - 1) = 7 players.

    Therefore, required number of ways,

    \(={ }^{7} {C}_{5}\)

    \(=\frac{7 !}{5 !(7-5) !}=21\)

  • Question 5
    1 / -0

    A coin is tossed \(6\) times. The probability of getting Exactly head three times is:

    Solution

    Total number of results in tossing a coin \(6\) times \(n(S)=2^{6}=64\)

    Number of all combinations of \(n\) things, taken \(r\) at a time, is given by \({ }^{n} C_{r}=\frac{n !}{(r) !(n-r) !}\)

    \(\therefore\) The number of times that the coin is tossed \(n(E)=6\) times the probability of the coin being tossed \(3\) times

    \(\Rightarrow n(E)={ }^{6} C_{3}\)

    \(=\frac{6 !}{3 ! \times 3 !}\)

    \(=\frac{6 \times 5 \times 4}{3 \times 2 \times 1}\)

    \(=20\)

    \(\therefore\) Probability \(P(E)=\frac{n(E)}{n(S)}\)

    \(=\frac{20}{64}\)

    \(=\frac{5}{16}\)

  • Question 6
    1 / -0

    Corner points of the feasible region for an LPP are \((0,3),(3,2),(6,0)\) and \((5,5)\). Let \(F=4 x\) \(+6 y\) be the objective function. Find the value of the maximum value of \(\mathrm{F}\).

    Solution

    Given,

    The objective function is ,

    \(F=4 x+6 y\)

    At\((0,3)\),

    \(F=4 \times 0+6 \times 3=18\)

    At \((3,2)\),

    \(F=4 \times 3+6 \times 2=24\)

    At \((6,0)\),

    \(F=4 \times 6+6 \times 0=24\)

    At \((5,5)\),

    \(F=4 \times 5+6 \times 5=50\)

    Thus, the maximum value of \(\mathrm{F}=50\)

  • Question 7
    1 / -0

    If the total number of observations is \(20, \sum x_{i}=1000\) and \(\sum x _{ i }^{2}=84000\), then what is the variance of the distribution?

    Solution

    Given: Number of observation \((N) =20\)

    \(\sum x_{i}=1000\) and \(\sum x_{i}^{2}=84000\)

    Variance \(=\frac{\sum x_{ i }^{2}}{ N }-\frac{\left(\sum x _{ i }\right)^{2}}{ N ^{2}}\)

    \(=\frac{84000}{20}-\frac{1000^{2}}{20^{2}}\)

    \(=4200-2500\)

    \(=1700\)

  • Question 8
    1 / -0

    If \(f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{e^{2 x}-1}, & x \neq 0 \\ k-2, & x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\)?

    Solution

    Since \(\mathrm{f}(\mathrm{x})\) is given to be continuous at \(\mathrm{x}=0\),

    \(\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})=\mathrm{f}(0)\)

    Also, \(\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)\) because \(f(x)\) is same for \(x>0\) and \(x<0\).

    \(\therefore \lim _{x \rightarrow 0} f(x)=f(0)\)

    We know that:

    \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)

    \(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\)

    Therefore,

    \(\Rightarrow \lim _{x \rightarrow 0} \frac{\sin 3 x}{e^{2 x}-1}=k-2\)

    Multiplying and dividing by 3x in numerator and by 2x in denominator, we get:

    \(\Rightarrow \lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{3 x} \times 3 x}{\frac{e^{2 x}-1}{2 x} \times 2 x}=k-2\)

    \(\Rightarrow \frac{3}{2}=k-2\)

    \(\Rightarrow k=\frac{7}{2}\)

  • Question 9
    1 / -0

    If \(x+2 y=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right]\) and \(2 x+5 y=\left[\begin{array}{ll}7 & 5 \\ 2 & 3\end{array}\right]\), then \(y\) is equal to:

    Solution
    Given,
    \(\begin{aligned}
    &x+2 y=\left[\begin{array}{cc}
    2 & -3 \\
    1 & 5
    \end{array}\right] \end{aligned}\)...(1)
    \(\begin{aligned} &2 x+5 y=\left[\begin{array}{ll}
    7 & 5 \\
    2 & 3
    \end{array}\right]
    \end{aligned}\)...(2)
    Multiplying by 2 in the equation (1), we get
    \( 2 x+4 y=\left[\begin{array}{cc}
    4 & -6 \\
    2 & 10
    \end{array}\right]\)...(3)
    Subtracting equation (3) from equation (2), we get
    \(\begin{aligned}
    &(2 x+5 y)-(2 x+4 y)=\left[\begin{array}{ll}
    7 & 5 \\
    2 & 3
    \end{array}\right]-\left[\begin{array}{cc}
    4 & -6 \\
    2 & 10
    \end{array}\right] \\
    &\therefore y=\left[\begin{array}{cc}
    3 & 11 \\
    0 & -7
    \end{array}\right]
    \end{aligned}\)
     
  • Question 10
    1 / -0

    The solution of the differential equation \(\frac{d y}{d x}=y\left(1-3 x^{2}\right)\) is:

    Solution

    The given equation is,

    \(\frac{d y}{d x}=y\left(1-3 x^{2}\right)\)

    \(\Rightarrow\frac{d y}{y}=\left(1-3 x^{2}\right) d x\)

    Integrating both side, we get,

    \(\int \frac{d y}{y}=\int\left(1-3 x^{2}\right) d x\)

    We know that,

    \(\int\frac{dx}{x}=\log x\) and \(\int x^n dx=\frac{x^{n+1}}{n+1}\)

    \(\therefore\log y=x-x^{3}+c\)

    We also know that,

    If \(\log x = n\) then \(x=e^n\)

    \(\therefore y=e^{x-x^{3}+c}\)

    \(\Rightarrow y=e^{x-x^{3}}. e^{c}\)

    \(\Rightarrow y=C e^{x\left(1-x^{2}\right)}\quad\)\([\)Let \(e^c=C]\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now