\(\lim _{n \rightarrow \infty}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0\)
[ This limit will be zero when α<0 as when α>0 then overall limit will be ∞.]
\(\Rightarrow \lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)\left(\sqrt{n^2-n-1}-(n \alpha+\beta)\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0\)
\(\Rightarrow \lim _{n \rightarrow \infty} \frac{\left(n^2-n-1\right)-(n \alpha+\beta)^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0\)
\(\Rightarrow \lim _{n \rightarrow \infty} \frac{n^2-n-1-n^2 \alpha^2-2 n \alpha \beta-\beta^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0\)
\(\Rightarrow \lim _{n \rightarrow \infty} \frac{n^2\left(1-\alpha^2\right)-n(1+2 \alpha \beta)-\left(1+\beta^2\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}\)
Here power of " n " in the numerator is 2 and power of " n " in the denominator is 1.
To get the value of limit equal to zero power of " n " should be equal in both numerator and denominator, otherwise value of limit will be infinite (∞).
∴ Coefficient of n2 should be 0 in this case.
∴1−α2=0
⇒α=±1
But α should be <0
∴α=+1 not possible
∴α=−1
\(\Rightarrow \lim _{n \rightarrow \infty} \frac{0-n(1+2 \alpha \beta)-(1+\beta)}{n\left[\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}\right]}=0\)
Divide numerator and denominator by n then we get,
\(\Rightarrow \lim _{n \rightarrow \infty} \frac{-(1+2 \alpha \beta)-\frac{(1+\beta)}{n}}{\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}}=0\)
\(\Rightarrow \frac{-(1+2 \alpha \beta)-0}{\sqrt{1-0-0}-\alpha-0}=0\)
\(\Rightarrow \frac{-(1+2 \alpha \beta)}{1-\alpha}=0\)
⇒−(1+2αβ)=0
⇒1+2αβ=0
⇒2αβ=−1
\(\Rightarrow \beta=-\frac{1}{2 \alpha}=-\frac{1}{2(-1)}=\frac{1}{2}\)
∴8(α+β)
\(=8\left(-1+\frac{1}{2}\right)\)
\(=8 \times-\frac{1}{2}\) =−4