Self Studies

Mathematics Test - 9

Result Self Studies

Mathematics Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The standard deviation of the set {18, 23, 14, 3, 17} is:

    Solution

    As per the given data,

    Mean (\(\bar{x}\)) of \((18,23,14,3,17)= \frac{(18+23+14+3+17)}{5}=15\)

    Variance

    \(\sigma^{2}=\frac{1}{n} \times \Sigma\left(x_{i}-\bar{x}\right)^{2}\)

    \(=\frac{\left[(18-15)^{2}+(23-15)^{2}+(14-15)^{2}+(3-15)^{2}+(17-15)^{2}\right]}{5}\)

    \(=\frac{(9+64+1+144+4)}{5}\)

    \(=\frac{222}{5}\)

    \(=44.4\)

    Standard Deviation: If \(\sigma^{2}\) is the variance, then \(\sigma\), is called the standard deviation, is given by

    \(\sigma=\sqrt{\frac{1}{n} \times \Sigma\left(x_{i}-\bar{x}\right)^{2}}\)

    Standard deviation \(=\sqrt{\text { variance }}=\sqrt{44.4}=6.66\)

  • Question 2
    1 / -0

    If \(\sin x+\sin 3 x+\sin 5 x=0\), then the solution is:

    Solution

    Given,

    \(\sin x+\sin 3 x+\sin 5 x=0\)

    \(\Rightarrow(\sin 5 \mathrm{x}+\sin \mathrm{x})+\sin 3 \mathrm{x}=0\)

    \(\Rightarrow 2 \sin 3 x \cos 2 x+\sin 3 x=0\) \(\quad (\because \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2})\)

    \(\Rightarrow \sin 3 x(2 \cos 2 x+1)=0\)

    \(\sin 3 \mathrm{x}=0\) or \(2 \cos 2 \mathrm{x}+1=0\)

    \(\sin 3 \mathrm{x}=0\) or, \(\cos 2 \mathrm{x}=-\frac{1}{2}\)

    Now, \(\sin 3 \mathrm{x}=0 \Longrightarrow 3 \mathrm{x}=\mathrm{n} \pi \Longrightarrow \mathrm{x}=\frac{\mathrm{n} \pi}{3}, \mathrm{n} \in \mathrm{Z}\)

    And, \(\cos 2 \mathrm{x}=-\frac{1}{2}\)

    \(\cos 2 \mathrm{x}=\cos \frac{2 \pi}{3}\)

    \(2 \mathrm{x}=2 \mathrm{~m} \pi \pm \frac{2 \pi}{3}, \mathrm{~m} \in \mathrm{Z}\)

    \(\mathrm{x}=\mathrm{m} \pi \pm \frac{\pi}{3}, \mathrm{~m} \in \mathrm{Z}\)

    \(\therefore\) The general solution of the given equation is : \(\mathrm{x}=\frac{\mathrm{n} \pi}{3}\) or, \(\mathrm{x}=\mathrm{m} \pi \pm \frac{\pi}{3}\), where \(\mathrm{m}, \mathrm{n} \in \mathrm{Z}\).

  • Question 3
    1 / -0

    Given function \(f(x)=\left(\frac{e^{2 z}-1}{e^{2 z}+1}\right)\) is:

    Solution
    \(\Rightarrow\)\(f(x)=\frac{e^{2 z}-1}{e^{2 z}+1}\)
    \(\Rightarrow\)\(f(-x)=\frac{e^{-2 z}-1}{e^{-2 z}+1}=\frac{1-e^{2 z}}{1+e^{2 z}}\)
    \(\Rightarrow\)\(f(x)=-\frac{e^{2 x}-1}{e^{2 x}+1}=-f(x)\)
    \({f}(\mathrm{x})\) is an odd function.
    Again
    \(\Rightarrow\)\(f(x)=\frac{e^{2 x}-1}{e^{2 x}+1} \Rightarrow f^{\prime}(x)=\frac{4 e^{2 x}}{\left(1+e^{2 x}\right)^{2}}>\)\(0 ~\forall~n \in R\)
    \(\mathrm{f}(\mathrm{x})\) is an increasing function.
  • Question 4
    1 / -0

    Let \(z\) and \(w\) be two complex numbers such that \(|z|=|w|=1\) and \(|z+i w|\) \(=|z-i \bar{w}|=2 .\) Then, \(z\) equals

    Solution

    We have \(|-iw|=|- i| |w|=1\)

    and \(|i \bar{w}|=|i||\bar{w}|=1\)

    \(\Rightarrow-i w\) and \(i \bar{w}\) lie on the circle \(|z|=1\)

    As \(|z-(-i w)|=|z-i \bar{w}|=2\) we get \(z\) and \(-i w\) as well as z and \(i \bar{w}\) are the end points of the same diameter, with one end point at \(z\).

    \(\therefore -i w=i \bar{w} \quad \Rightarrow w+\bar{w}=0\)

    \(\Rightarrow \quad w\) is purely imaginary.

    Let \(w=i k \quad\) where \(k \in \mathrm{R}\)

    As \(|w|=1,\) we get \(|i k|=1\)

    \(\Rightarrow |k|=1 \quad \Rightarrow k=\pm 1\)

    \(\therefore \quad w=\pm i \Rightarrow-i w=i \bar{w}=\pm 1\)

    Thus \(|z-1|=2\) and \(|z+1|=2\)

    Out of the choices, we get \(z=-1\) or \(1 \)

  • Question 5
    1 / -0

    By mathematical induction \(\mathrm{p}^{\mathrm{n}+1}+(\mathrm{p}+1)^{2 \mathrm{n}-1}\) is divisible by:

    Solution

    Given:

    \(f(n)=p^{n+1}+(p+1)^{2 n-1}\)

    we have \(f(1)=p^{2}+p+1\) which is divisible by \(p^{2}+p+1\).

    Now, assume that \(\mathrm{f}(\mathrm{m})\) is divisible by \(\mathrm{p}^{2}+\mathrm{p}+1\).

    \(\therefore \mathrm{p}^{\mathrm{m}+1}+(\mathrm{p}+1)^{2 \mathrm{~m}-1}=\mathrm{k}\left(\mathrm{p}^{2}+\mathrm{p}+1\right) \quad \ldots(1) \)

    For \(\mathrm{f}(\mathrm{m+1})\):

    \(\mathrm{f}(\mathrm{m}+1)=\mathrm{p}^{\mathrm{m}+2}+(\mathrm{p}+1)^{2 \mathrm{~m}+2-1} \)

    \(=\mathrm{p}^{\mathrm{m}+2}+(\mathrm{p}+1)^{2 \mathrm{~m}-1} \cdot(\mathrm{p}+1)^{2} \)

    \(=\mathrm{p}^{\mathrm{m}+2}+\left[\mathrm{k}\left(\mathrm{p}^{2}+\mathrm{p}+1\right)-\mathrm{p}^{\mathrm{m}+1}\right](\mathrm{p}+1)^{2} \)

    \(=\mathrm{p}^{\mathrm{m}+2}-(\mathrm{p}+1)^{2} \mathrm{p}^{\mathrm{m}+1}+\mathrm{k}(\mathrm{p}+1)^{2}\left(\mathrm{p}^{2}+\mathrm{p}+1\right) \)

    \(=\mathrm{p}^{\mathrm{m}+1}\left(\mathrm{p}-\mathrm{p}^{2}-2 \mathrm{p}-1\right)+\mathrm{k}(\mathrm{p}+1)^{2}\left(\mathrm{p}^{2}+\mathrm{p}+1\right) \)

    \(=-\left(\mathrm{p}^{2}+\mathrm{p}+1\right)\left[-\mathrm{k}(\mathrm{p}+1)^{2}+\mathrm{p}^{\mathrm{m}+1}\right]\)

    So, \(f(m+1)\) is divisible by \(p^{2}+p+1\)

    By mathematical induction \(\mathrm{f}(\mathrm{n})\) is divisible by \(\mathrm{p}^{2}+\mathrm{p}+1\) for all \(\mathrm{n} \in \mathrm{N}\).

  • Question 6
    1 / -0

    Let \(f:R \rightarrow R\) be a function defined as \(f(x)=e^{x}\), for each \(x \in R, R\) is being the set of real numbers. Which one of the following is correct?

    Solution

    Given that:

    \(f:R \rightarrow R\), given by \(f(x)=e^{x}\).

    one − one:

    Let \(x_{1}\) and \(x_{2}\) be any two elements in the domain (R), such that \(f\left(x_{1}\right)=f\left(x_{2}\right)\)

    \(f\left(x_{1}\right)\):

    \(\Rightarrow f\left(x_{1}\right)=e^{x_{1}}\)

    Now, \(f\left(x_{1}\right)=f\left(x_{2}\right)\)

    \(\Rightarrow \mathrm{e}^{\mathrm{x}_{1}}=\mathrm{e}^{\mathrm{x}_{2}}\)

    \(\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}\)

    \(\therefore \mathrm{f}\) is one-one function.

    Onto:

    We know that:

    Range of \(e^{x}\) is \((0, \infty)=R^{+}\)

    \(\Rightarrow\) Co-domain \(=R\)

    Both are not same.

    \(\therefore \mathrm{f}\) is not onto function.

    If the co-domain is replaced by \(\mathrm{R}^{+}\), then the co-domain and range become the same and in that case, \(\mathrm{f}\) is onto and therefore, it is a bijection.

  • Question 7
    1 / -0
    Two sets \(\mathrm{A}\) and \(\mathrm{B}\) are defined as follows
    \(\mathrm{A}=\left\{(x, y): y=e^{2 x}, x \in \mathrm{R}\right\}\)
    \(\mathrm{B}=\left\{({x}, {y}): {y}={x}^{2}, \mathrm{x} \in \mathrm{R}\right\}\), then:
    Solution
    \(A=\left\{(x, y): y=e^{2 x}, x \in R\right\}\)
    \(\mathrm{B}=\left\{({x}, \mathrm{y}): {y}={x}^{2}, {x} \in \mathrm{R}\right\}\)
    then, \(\mathrm{A}=\left(\mathrm{e}^{0}, \mathrm{e}^{1}, \mathrm{e}^{2}, \ldots ., \mathrm{e}^{\infty}\right)\)
    \(\mathrm{B}=\left(1, \mathrm{e}^{1}, \mathrm{e}^{2}, \ldots \ldots\right)\)
    \(\mathrm{B}=(0,1,4, \ldots . .)\)
    \(\therefore \mathrm{A} \subset \mathrm{B}\)
  • Question 8
    1 / -0

    \(\text { If } \lim _{n \rightarrow \infty}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0 \text {, then } 8(\alpha+\beta) \text { is equal to: }\)

    Solution

    \(\lim _{n \rightarrow \infty}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0\)

    [ This limit will be zero when α<0 as when α>0 then overall limit will be .]

    \(\Rightarrow \lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)\left(\sqrt{n^2-n-1}-(n \alpha+\beta)\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0\)

    \(\Rightarrow \lim _{n \rightarrow \infty} \frac{\left(n^2-n-1\right)-(n \alpha+\beta)^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0\)

    \(\Rightarrow \lim _{n \rightarrow \infty} \frac{n^2-n-1-n^2 \alpha^2-2 n \alpha \beta-\beta^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0\)

    \(\Rightarrow \lim _{n \rightarrow \infty} \frac{n^2\left(1-\alpha^2\right)-n(1+2 \alpha \beta)-\left(1+\beta^2\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}\)

    Here power of " n " in the numerator is 2 and power of " n " in the denominator is 1.
    To get the value of limit equal to zero power of " n " should be equal in both numerator and denominator, otherwise value of limit will be infinite ().
     Coefficient of n2 should be 0 in this case.
    1α2=0
    α=±1

    But α should be <0
    α=+1 not possible 
    α=1

    \(\Rightarrow \lim _{n \rightarrow \infty} \frac{0-n(1+2 \alpha \beta)-(1+\beta)}{n\left[\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}\right]}=0\)

    Divide numerator and denominator by n then we get,

    \(\Rightarrow \lim _{n \rightarrow \infty} \frac{-(1+2 \alpha \beta)-\frac{(1+\beta)}{n}}{\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}}=0\)

    \(\Rightarrow \frac{-(1+2 \alpha \beta)-0}{\sqrt{1-0-0}-\alpha-0}=0\)

    \(\Rightarrow \frac{-(1+2 \alpha \beta)}{1-\alpha}=0\)

    (1+2αβ)=0
    1+2αβ=0
    2αβ=1

    \(\Rightarrow \beta=-\frac{1}{2 \alpha}=-\frac{1}{2(-1)}=\frac{1}{2}\)

    8(α+β)

    \(=8\left(-1+\frac{1}{2}\right)\)

    \(=8 \times-\frac{1}{2}\) =4

  • Question 9
    1 / -0

    \(z=10 x+25 y\) subject to \(0 \leq x \leq 3\) and \(0 \leq y \leq 3, x+y \leq 5\) then the maximum value of \(\mathrm{z}\) is:

    Solution

    Given,

    The objective function,

    \(z=10 x+25 y\) is subjected to \(0 \leq x \leq 3\) and \(0 \leq y \leq 3, x+y \leq 5\).

    We check the value of z at these points.

    At \((0,3)\),

    \(z=0+75=75\)

    At \((3,0)\),

    \(z=30+0=30\)

    At \((0,0)\),

    \(z=0\)

    At \((3,2)\),

    \(z=30+50=80\)

    At \((2,3)\),

    \(z=20+75=95\)

    Therefore, the maximum value of \(z\) turns out to be \(95\).

  • Question 10
    1 / -0

    The maximum value of the determinant among all \(2 × 2\) real symmetric matrices with trace \(24\) is _______.

    Solution

    Let the symmetric matrix be

    \(X=\left[\begin{array}{ll}b & a \\ a & c\end{array}\right]\)

    \(\therefore|X|=b c-a^{2}\)

    Since the given matrix is real, to get maximum determinant value of \(a\) should be equal to \(0\).

    \(b+c=24\)

    \(c=24-b\)

    \(\therefore|X|=b \times(24-b)\)

    \(|X|=24 b-b^{2}\)

    Differentiating with respect to \(b\)

    \(|X|^{\prime}=24-2 b=0\)

    \(\therefore b=12\)

    \(|X|^{\prime \prime}=-2<0\)

    At \(b=12\) it will have maximum value

    \(c=24-12\)

    \(=12\)

    Maximum value \(=12 \times 12-0=144\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now