Given masses of three liquids are equal,
i.e. \(m_x=m_y=m_z=m\)
Temperature of mixture of liquids \(x\) and \(y, \mathrm{~T}_1=16^{\circ} \mathrm{C}\)
Temperature of mixture of liquids \(y\) and \(z, T_2=26^{\circ} \mathrm{C}\)
While mixing the liquids \(x\) and \(y\), the heat energy lost by liquid \(y\)
will be equal to the heat energy absorbed by liquid \(x\).
Consider the specific heat capacity of liquid \(\mathrm{x}\) is \(s_x\), of liquid \(\mathrm{y}\) is \(s_y\)
and of liquid \(\mathrm{z}\) is \(s_z\).
Now, for liquid \(\mathrm{x}\) and \(\mathrm{y}\), using principle of calorimetry,
Heat gained by liquid \(x=\) Heat lost by liquid \(y\)
\(m s_x\left(\mathrm{~T}_1-10\right)=m s_y\left(20-\mathrm{T}_1\right) \)
\(\Rightarrow s_x(16-10)=s_y(20-16) \)
\(\Rightarrow \frac{s_x}{s_y}=\frac{2}{3} \ldots(\mathrm{i})\)
Similarly, for liquid \(y\) and \(z\), using principle of calorimetry,
Heat gained by liquid \(\mathrm{y}=\) Heat lost by liquid \(\mathrm{z}\)
\(m s_y\left(\mathrm{~T}_2-20\right)=m s_z\left(30-\mathrm{T}_2\right) \)
\(\Rightarrow s_y(26-20)=s_z(30-26) \ldots \)
\(\Rightarrow \frac{s_y}{s_z}=\frac{2}{3} \ldots \text { (i) }\)
Multiply Eq. (i) by Eq. (ii), we get
\(\frac{s_x}{s_z}=\frac{4}{9}\)
Consider the mixing of liquids \(x\) and \(z\), let the temperature of mixture be \(T_3\).
Using principle of calorimetry for liquids \(x\) and \(z\).
Heat gained by liquid \(x=\) Heat lost by liquid \(z\)
\(m s_x\left(\mathrm{~T}_3-10\right)=m_z\left(30-\mathrm{T}_3\right)\)
\(\Rightarrow s_x\left(\mathrm{~T}_3-10\right)=s_z\left(30-\mathrm{T}_3\right)\)
\(\Rightarrow \frac{s_x}{s_z}=\frac{30-\mathrm{T}_3}{\mathrm{~T}_3-10} \)
\(\Rightarrow \frac{4}{9}=\frac{30-\mathrm{T}_3}{\mathrm{~T}_3-10} \)
\(\Rightarrow 4 \mathrm{~T}_3-40=270-9 \mathrm{~T}_3 \)
\(\Rightarrow \mathrm{T}_3=23.84^{\circ} \mathrm{C}\)