Let \(\mathrm{E_{n}}\) and \(\mathrm{E_{m}}\) be the energies of electron in \(n^{\text {th }}\) and \(m^{\text {th }}\) states.
Then, \(\mathrm{E_{n}-E_{m}=h v_{0}} \ldots(1)\)
![]()
In the second case when the atom is moving with a velocity \(\mathrm{v}\). Let \(\mathrm{v^{\prime}}\) be the velocity of atom after emitting the photon. Applying conservation of linear momentum,
\(\mathrm{mv}=\mathrm{mv}^{\prime}+\frac{\mathrm{h\nu}}{\mathrm{c}}\) ( \(\mathrm{m}\) = mass of hydrogen atom)
\(\Rightarrow \mathrm{v}^{\prime}=\left(\mathrm{v}-\frac{\mathrm{h\nu}}{\mathrm{mc}}\right) \ldots(2)\)
Applying conservation of energy
\(\mathrm{E}_{\mathrm{n}}+\frac{1}{2} \mathrm{mv}^{2}=\mathrm{E}_{\mathrm{m}}+\frac{1}{2} \mathrm{mv'}^{2}+\mathrm{h}\nu\)
\(\Rightarrow \mathrm{h} \nu=\left(\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{m}}\right)+\frac{1}{2} \mathrm{~m}\left(\mathrm{v}^{2}-\mathrm{v'}^{2}\right)\)
From equation (1) and (2)
\(=\mathrm{h}\nu_{0}+\frac{1}{2} \mathrm{~m}\left[\mathrm{v}^{2}-\left(\mathrm{v}-\frac{\mathrm{h} \nu}{\mathrm{mc}}\right)^{2}\right]\)
\(=\mathrm{h}\nu_{0}+\frac{1}{2} \mathrm{~m}\left[\mathrm{v}^{2}-\mathrm{v}^{2}-\frac{\mathrm{h}^{2} \nu ^{2}}{\mathrm{~m}^{2} \mathrm{c}^{2}}+\frac{2 \mathrm{h\nu v}}{\mathrm{mc}}\right]\)
\(=\mathrm{h} \nu_{0}+\frac{\mathrm{h} \nu \mathrm{v}}{\mathrm{c}}-\frac{\mathrm{h}^{2} \nu^{2}}{2 \mathrm{mc}^{2}}\)
Here the term is \(\frac{\mathrm{h}^{2}\nu^{2}}{2 \mathrm{mc}^{2}}\) is very small. So, can be neglected.
\(\therefore \mathrm{h \nu=h \nu_{0}+\frac{h \nu v}{c}}\)
\(\Rightarrow \nu=\nu_0 +\frac{\nu\mathrm{v}}{c}\)
\(\Rightarrow \nu_{0}=\nu\left(1-\frac{\mathrm{v}}{\mathrm{c}}\right)\)