Force \(=\mathrm{G} \times \mathrm{m}_{1} \times \mathrm{m}_{2} \times\left[\mathrm{r}^{2}\right]^{-1}\)
\(\Rightarrow \mathrm{G}=\) Force \(\times \mathrm{r}^{2} \times\left[\mathrm{m}_{1} \times \mathrm{m}_{2}\right]^{-1} \ldots \ldots(1)\)
Where, \(\mathrm{G}=\) Universal Gravitational Constant
Now, the dimensions of,
Mass \(=\left[M^{1} L^{0} T^{0}\right] \ldots .(2)\)
Radius \(=\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\right] \ldots(3)\)
Force \(=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right] \ldots \ldots(4)\)
On substituting equation \((2),(3)\) and (4) in equation (1), we get
Universal Gravitational Constant = Force \(\times \mathrm{r}^{2} \times\left[\mathrm{m}_{1} \times \mathrm{m}_{2}\right]^{-1}\)
\(\mathrm{G}=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right] \times\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\right]^{2} \times\left[\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]^{-1} \times\left[\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]^{-1}\)
\(=\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\)
Therefore, the Universal Gravitational constant is dimensionally represented as \(\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\).