Self Studies

Physics Test - 38

Result Self Studies

Physics Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A round disc of moment of inertia \(\mathrm I_{2}\) about its axis perpendicular to its plane and passing through its centre is placed over another disc of moment of inertia \(\mathrm I_{1}\) rotating with an angular velocity \(\mathrm \omega\) about the same axis. The final angular velocity of the combination of discs is
    Solution

    Total angular momentum of the system initially \(\mathrm{L}_{\mathrm{i}}=\mathrm{I}_{1} \mathrm{\omega}+\mathrm{I}_{2}(\mathrm{0})=\mathrm{I}_{1} \mathrm{\omega}\)

    Total angular momentum of the system finally \(\mathrm{L}_{\mathrm{f}}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \mathrm{\omega}_{2}\)

    According to conservation of angular momentum i.e. \(\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}\)

    \(\Rightarrow \mathrm{I}_{1} \omega=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega_{2}\)

    \(\Rightarrow \omega_{2}=\frac{\mathrm{I}_{1} \omega}{\mathrm{I}_{1}+\mathrm{I}_{2}}\)

  • Question 2
    1 / -0

    The position of a particle at any time \(t\) is given by the relation \(x(t)=\frac{v}{A}\left(1-e^{-A t}\right)\) where \(v\) is the velocity. Then what will be the dimension of \(A\)?

    Solution

    Given,

    \(x(t)=\frac{v}{A}\left(1-e^{-A t}\right)\)

    As we know that \( (1- {e}^{\text {-At }}) \) is a constant value and will have no dimension.

    Thus, the dimension of \(\frac{v}{A}\) will be equal to the dimension of \(x\).

    Dimension of position, \(x=\left[M^{0} L^{1} T^{0}\right]\)

    Thedimension of velocity,\(v=\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]\)

    \(\Rightarrow x=\frac{v}{A}\)

    \(\Rightarrow\left[M^{0} L^{1} T^{0}\right]=\frac{\left[M^{0} L^{1} T^{-1}\right]}{A}\)

    \(\Rightarrow A=\left[T^{-1}\right]\)

  • Question 3
    1 / -0

    The magnetic field at the center of current carrying circular loop is \(B_1\). The magnetic field at a distance of \(\sqrt{3}\) times radius of the given circular loop from the center on its axis is \(\mathrm{B}_2\). The value of \(\mathrm{B}_1 / \mathrm{B}_2\) will be

    Solution

    \(\begin{aligned} & \mathrm{B}_1=\frac{\mu_0 \mathrm{i}}{2 \mathrm{R}} \\ & \mathrm{B}_2=\frac{\mu_0 \mathrm{R}^2}{2\left(\mathrm{R}^2+\mathrm{x}^2\right)^{\frac{3}{2}}} \\ & \Rightarrow \frac{\mathrm{B}_1}{\mathrm{~B}_2}=\frac{1}{\mathrm{R}^3}\left(\mathrm{R}^2+\mathrm{x}^2\right)^{\frac{3}{2}} \\ & =\frac{1}{\mathrm{R}^3}\left(8 \mathrm{R}^3\right) \\ & =8\end{aligned}\)

  • Question 4
    1 / -0

    Dimension of Planck's constant is similar to:

    Solution

    As we know that the dimension of Planck's constant = \(\left[M L^{2} T^{-1}\right]\)

    The dimension of angular momentum = \(\left[M L^{2} T^{-1}\right]\)

    The dimension of Linear momentum = \(\left[M^{1} L^{1} T^{-1}\right]\)

    The dimension of Torque = \(\left[M L^{2} T^{-2}\right]\)

    The dimension of Velocity = \(\left[\mathrm{L} \mathrm{T}^{-1}\right]\)

    Thus we can see that the dimension of Planck's constant is similar to angular momentum.

  • Question 5
    1 / -0

    Calculate the Coulomb force between \(2\) alpha particles separated by\(3.2 \times 10^{-15} m\).

    Solution

    Given,

    Charge on an alpha particle, \(q_{1}=q_{2}=+2 e\)

    Distance between the particles, \(r=3.2 \times 10^{-15} m\)

    We know that:

    Charge on an electron, \(e=1.6 \times 10^{-19}\)

    and, \(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9}\)

    Now, using coulomb's law, we get,

    Force acting on the particles is given by,

    \(F=\frac{1}{4 \pi \epsilon_{0}} \times\frac{q_{1} q_{2}}{r^{2}} \)

    \(F=\frac{9 \times 10^{9} \times 2 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}}{3.2 \times 10^{-15} \times 3.2 \times 10^{-15}} \)

    \(F=\frac{36 \times 10^{9} \times 2.56 \times 10^{-19}\times 10^{-19}}{3.2 \times 10^{-15} \times 3.2 \times 10^{-15}}\)

    \(F= 90 N\)

  • Question 6
    1 / -0

    Interference proves:

    Solution

    The wave theory of light was first demonstrated by Thomas Young in 1801 through Young's double-slit experiment.

    This experiment shows that the observed pattern of interference occurs due to the superposition of light waves which proves the wave nature of light.

    In this experiment, two narrow slits that are close to each other, are illuminated by a monochromatic light source.

    The two slits are responsible for the production of two different wavefronts which then superimpose on a screen forming the definite interference pattern.

    For two coherent sources \(s_1\) and \(s_2\), the resultant intensity at some point p is given by:

    \(I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2} \cos \phi}\)

    Thus, interference proves wave nature.

  • Question 7
    1 / -0

    An electron and a proton are allowed to fall through the separation between the plates of a parallel plate capacitor of voltage \(5 \mathrm{~V}\) and separation distance \(\mathrm{h}=1 \mathrm{~mm}\). Calculate the time of flight for both electron and proton:

    Solution

    Given:

    \(m_{p}=1.6 \times 10^{-27} \mathrm{~kg}, g=10 \mathrm{~ms}^{-2}\)

    \(\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-27} \mathrm{Kg}\)

    \(\mathrm{h}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}\)

    \(V=5 \mathrm{~V}\)

    Time of flight of electron \(t_{e}=\sqrt{\frac{2 h}{a}}\) (ignoring gravity)

    We know that \(\mathrm{F}=\mathrm{ma}\)

    Similarly \(\mathrm{F=e E}\)

    \(\therefore \mathrm{a}=\frac{e E}{m}\left[\right.\) also \(\left.\mathrm{E}=\mathrm{V} / \mathrm{d}=\frac{5}{10^{-3}}=5000 \mathrm{Vm}^{-1}\right]\)

    \(\therefore \mathrm{t}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{hm}_{e}}{e E}}=\sqrt{\frac{2 \times 10^{-3} \times 9.1 \times 10^{-31}}{1,6 \times 10^{-19} \times 5000}}\)

    \(=\left[\frac{2 \times 9.1 \times 10^{-34}}{1.6 \times 5 \times 10^{-16}}\right]^{1 / 2}=\left[2.275 \times 10^{-18}\right]^{1 / 2}\)

    \(t_{e} \simeq 1.5 \times 10^{-9} \mathrm{~S}\) or \(\simeq 1.5 \mathrm{~ns}\)

    Time flight for proton is

    \(t_{p}=\sqrt{\frac{2 h m_{p}}{e E}}\)

    \(=\sqrt{\frac{2 \times 10^{-3} \times 1.6 \times 10^{-27}}{1.6 \times 10^{-19} \times 5000}}=\left[\frac{2 \times 10^{-30}}{5 \times 10^{-16}}\right]^{1 / 2}\)

    \(=\left[0.4 \times 10^{-14}\right]^{1 / 2}\)

    \(=\left[4000 \times 10^{-18}\right]^{1 / 2}\)

    \(=63.25 \times 10^{-9}\)

    \(t_{p}=63.25 \mathrm{~ns}\)

  • Question 8
    1 / -0

    Four particles each of mass M, move along a circle of radius R under the action of their mutual gravitational attraction as shown in figur. The speed of each particle is

    Solution

  • Question 9
    1 / -0

    Some gases like Hydrogen, oxygen, nitrogen behaves as an ideal gas at:

    Solution

    Some gases like Hydrogen, oxygen, nitrogen behaves as an ideal gas at low Pressure and High Temperature.

    An ideal gas is a gas that obeys the law of the Ideal Gas Equation.

    \(PV = nRT\)

    While deriving the ideal gas equation, the following assumptions should be considered:

    • The size of the ideal gas molecules is negligibly small.
    • There must be no force of attraction among the molecules of the gases.
    • Ideal gas work at Low Pressure and High Temperature.
  • Question 10
    1 / -0

    Four identical hollow cylindrical columns of mild steel support a big structure of mass \(50 \times 10^3 \mathrm{~kg}\). The inner and outer radii of each column are \(50 \mathrm{~cm}\) and \(100 \mathrm{~cm}\), respectively. Assuming, uniform local distribution, calculate the compressionstrain of each column.

    [Use, \(Y=2.0 \times 10^{11} \mathrm{~Pa}, g=9.8 \mathrm{~m} / \mathrm{s}^2\) ].

    Solution

    Given that, \(r=50 \mathrm{~cm}, R=100 \mathrm{~cm}\)

    Mass supported on four columns, \(M=50 \times 10^3 \mathrm{~kg}\)

    Mass supported on each column, \(m=\frac{M}{4}\)

    \(\Rightarrow m=\frac{50 \times 10^3}{4}=12.5 \times 10^3 \mathrm{~kg}\)

    Now, weight, \(w=m g=12.5 \times 9.8 \times 10^3 \mathrm{~N}=1225 \times 10^5 \mathrm{~N}\)

    Area of cross-section of each column

    \(A=\pi\left(R^2-r^2\right) \)

    \(=3.14\left\{(100)^2-(50)^2\right\} \times 10^{-4} m^2=2.35 m^2\)

    Young's modulus, \(Y=2.0 \times 10^{11} \mathrm{~Pa}\)

    By using Hooke's law,

    Stress \(=Y \times\) Strain

    \(\therefore\) Compressive strain \(=\frac{\text { Stress }}{Y}=\frac{W}{A Y}\)

    Substituting the values, we get

    \(\text { Compressive strain }=\frac{1.225 \times 10^5}{2.35 \times 2.0 \times 10^{11}}=2.60 \times 10^{-7}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now