Let total distance be \(S\)
\(S\)= \(1350\) \(m\)
Let \(a=1 ~m / s^{2}\)
\(r=3 ~m/s^{2}\)
Let \(S_{1}\) be the distance covered with positive acceleration
Let \(S_{2}\) be the distance travelled with negative acceleration
We know \(v^{2}-u^{2}=2 ~a s\)
Therefore, \(S_{1}=\frac{\left(v^{2}-u^{2}\right)}{2a}\) ……..\((i)\)
And \(S_{2}=\frac{\left(v^{2}-u^{2}\right)}{2r}\) ……..\((ii)\)
Now, \(v\) and \(u\) are same for the train
There \(v^{2}-u^{2}\) is same for both equations
Equation \((i)\) divided by \((ii)\) give
\(\frac{S_{1}}{S_{2}}=\frac{r}{a}\)
i.e., \(\frac{S_{1}}{S_{2}}=\frac{3}{1}\)
\(S_{1}=3 ~S_{2}\)
Now, \(S_{2}=S-S_{1}\)
Therefore, \(S_{1}=3\left (S-S_{1}\right)\)
l.e, \(S_{1}=3 S-3 S_{1}\)
\(4 S_{1}=3 S\)
\(S_{1}=\frac{3}{4} × S = \frac{(3 × 1350)}{4} = 1012.5 ~m\)
And so \(S_{2}=\frac{1}{4} × S = \frac{1350}{4} = 337.5 ~m\)
Now, \(S_{1}=u+\frac{1}{2} × a × t^{2}\)
\(u=0\) as train starts from rest
\(1012.5=\frac{1}{2} × 1 × t_{1}^{2}\)
\(t_{1}^{2}=2025\)
\(t_{1}=45~s \)
Also \(S_{2}=\frac{1}{2} × r × t_{2}^{2}\)
\(337.5=\frac{3}{2} × t_{2}^{2}\)
\(t_{2}^{2}=225\)
\(t_{2}=15 ~s \)
Therefore, total time
\(T=t_{1}+t_{2}\)
\(T=45+15\)
\(T=60~s \)
Therefore, total time taken by train \(=60~s \)