Force acting on \(m_{1}\) is
\(\mathrm{m}_{1} g-T=m_{1} a\) ...........\((i)\)
Force acting on \(m_{2}\) is
\(T-m_{2} g=m_{2} a\) ...........\((ii)\)
Using these, we can find the acceleration of the body,
\(a=\frac{\left(m_{1}-m_{2}\right) g}{m_{1}+m_{2}}\)
Substituting the value of acceleration in equation \((i)\), we get
\(m_{1} g-T=m_{1} a\)
\(T=m_{1}(g-a)\)
\(T=m_{1}\left(g-\frac{\left(m_{1}-m_{2}\right) g}{m_{1}+m_{2}}\right)\)
Therefore, tension is given as,
\(T=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g\)
In which \(m_{1}\) and \(m_{2}\) are the mass of the blocks connected to the metal wire.
\(g\) is the acceleration due to gravity.
\(r=\frac{1}{10^{3}} \times 10^{3}{mm}=1{mm}\)
\(T=\frac{2 \times 1 \times 2}{1+2} \times 10 N\)
\(T=\frac{40}{3} N\)
If \(r\) is the minimum radius, then breaking stress \(S\) is given by \(S=\left(\frac{\frac{40}{3}}{\pi r^{2}}\right)\)
Substituting the value of \(r\) in this will give,
\(\left(\frac{\frac{40}{3}}{\pi r^{2}}\right)=\frac{40}{3 \pi} \times 10^{6}\)
Thus, we get like this
\(r^{2}=\frac{1}{10^{6}}\)
Therefore, the minimum radius is
\(r=\frac{1}{10^{3}} m\)
\(r=\frac{1}{10^{3}} \times 10^{3} mm=1 mm\)