In a Young's double slit experiment for interference pattern, the position of bright fringe is given by
\(\mathrm{y}_{\mathrm{n}}=\frac{\mathrm{n} \lambda \mathrm{D}}{\mathrm{d}}\)
Here, \(\mathrm{D}=1.5 \mathrm{~m}\),
\(\mathrm{d}=0.3 \times 10^{-3} \times \mathrm{m}\)
and \(\mathrm{n}=1\)
\(\lambda=\frac{\mathrm{y}_{\mathrm{n}} \mathrm{d}}{\mathrm{D}}\)
For first violet, \(\mathrm{y}_{\mathrm{n}}=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}\)
\(\therefore \lambda_{\text {violet }}=2 \times 10^{-3} \frac{\mathrm{d}}{\mathrm{D}}\)
For first red \(\mathrm{y}_{\mathrm{n}}=3.5 \mathrm{~mm}=3.5 \times 10^{-3} \mathrm{~m}\)
\(\lambda_{\text {red }}=3.5 \times 10^{-3} \frac{\mathrm{d}}{\mathrm{D}}\)
The difference in wavelengths of red and violet light is
\(\Delta \lambda=\lambda_{\text {red }}-\lambda_{\text {violet }} \)
\(=3.5 \times 10^{-3} \frac{\mathrm{d}}{\mathrm{D}}-2 \times 10^{-3} \frac{\mathrm{d}}{\mathrm{D}} \)
\(=\frac{\mathrm{d}}{\mathrm{D}}(1.5) \times 10^{-3} \)
\(=\frac{0.3 \times 10^{-3}}{1.5} \times 1.5 \times 10^{-3} \)
\(=0.3 \times 10^{-6} \)
\(=0.3 \times 10^{-6} \times 10^3 \times 10^{-3} \)
\(=300 \times 10^{-9} \)
\(=300 \mathrm{~nm}\)