The equation of magnetic field vector of an electromagnetic field is
\(B=\frac{B_0}{\sqrt{2}}(\hat{i}+\hat{j}) \cos (k z-\omega t) T\)
Electric charges
\(\mathrm{q}_1\) at \(\mathrm{P}\left(0,0, \frac{\pi}{\mathrm{k}}\right)=4 \pi \mathrm{C}\)
\(\mathrm{q}_2\) at \(\mathrm{Q}\left(0,0, \frac{3 \pi}{\mathrm{k}}\right)=2 \pi \mathrm{C}\)
At \(\mathrm{t}=0\) and \(\mathrm{P}\left(0,0, \frac{\pi}{\mathrm{k}}\right)\), where \(\mathrm{z}=\frac{\pi}{\mathrm{k}}\)
Magnetic field vector,
\(B =\frac{B_0}{\sqrt{2}}(\hat{i}+\hat{j}) \cos \left(k \frac{\pi}{k}-0\right) T \)
\(=\frac{B_0}{\sqrt{2}}(\hat{i}+\hat{j}) \cos \pi T=-\frac{B_0}{\sqrt{2}}(\hat{i}+\hat{j}) T\)
and at \(\mathrm{t}=0\) and \(\mathrm{Q}\left(0,0, \frac{3 \pi}{\mathrm{k}}\right)\), where \(\mathrm{z}=\frac{3 \pi}{\mathrm{k}}\). Magnetic field vector,
\(B =\frac{B_0}{\sqrt{2}}(\hat{i}+\hat{j}) \cos \left(k \frac{3 \pi}{k}-0\right) \)
\(=-\frac{B_0}{\sqrt{2}}(\hat{i}+\hat{j}) T[\because \text { Using } \cos \pi=\cos 3 \pi=-1]\)
Velocity of charges \(q_1\) and \(q_2, v=0.5 \hat{c i}\)
We know that, force on charge in magnetic field is given by
\(\mathrm{F}=\mathrm{q}(\mathrm{v} \times \mathrm{B})\)
\(\therefore\) For \(\mathrm{q}_1, \mathrm{~F}_1=4 \pi\left[0.5 \mathrm{c} \hat{\mathrm{i}} \times\left\{-\frac{\mathrm{B}_0}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\right\}\right] \mathrm{N}\)
\(\mathrm{F}_1=-\frac{2 \pi \mathrm{cB}}{\sqrt{2}} \hat{\mathrm{k}} \mathrm{N}\)
Similarly, for \(q_2\)
\(\Rightarrow \mathrm{F}_2=2 \pi\left[0.5 \mathrm{c} \hat{\mathrm{i}} \times\left\{-\frac{\mathrm{B}_0}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\right\}\right] \mathrm{N} \)
\(\Rightarrow \mathrm{F}_2=-\frac{\pi \mathrm{c} \mathrm{B}_0}{\sqrt{2}} \hat{\mathrm{kN}}\)
Hence, ratio of magnitudes of \(F_1\) to \(F_2\)
\(\frac{\mathrm{F}_1}{\mathrm{~F}_2}=\frac{\frac{2 \pi \mathrm{cB}}{0}}{\frac{\pi \sqrt{2}}{\pi \mathrm{cB}_0}}=\frac{2}{1} \)
\(\Rightarrow \mathrm{F}_1: \mathrm{F}_2=2: 1\)