Energy in nth orbit of Hydrogen atom is given by:
\(E_{n}=-\frac{13.6 Z^{2}}{n^{2}} e V\)
Where \(Z\) is the atomic number and \(n\) is the principal quantum number.
The velocity of the revolving electron is:
\(v=\frac{e^{2}}{2 n h \epsilon_{0}}\)
The Rydberg's constant is:
\(R=\frac{m e^{4}}{8 \epsilon_{0}^{2} h^{3} c}\)
Thus,
\(v R=\frac{e^{2}}{2 n h \epsilon_{0}} \times \frac{m e^{4}}{8 \epsilon_{0}^{2} h^{3} c}=\frac{m e^{6}}{16 n h^{4} \in_{0}^{3} c}\)
Since, \(\mathrm{n}, \mathrm{h}, \epsilon_{0}, \mathrm{~m}, \mathrm{c}, \mathrm{e}\) are constant.
So, the VR is inversely proportional to the principal quantum number (n).
The energy of an electron is:
\(E=\frac{-m e^{4}}{8 n^{2} h^{2} C_{0}^{2}}\)
Thus,
\(\frac{v}{E}=\frac{\frac{c^{2}}{2 n h \epsilon_{0}}}{\frac{-m_{e^{4}}}{8 n^{2} h^{2} \in_{0}^{2}}}\)
\(\frac{v}{E}=\frac{e^{2}}{2 n h \epsilon_{0}} \times \frac{8 n^{2} h^{2} \epsilon_{0}^{2} v}{-m e^{4} E}=-\frac{4 n h \epsilon_{0}}{m e^{2}}\)
Since, \(\mathrm{n}, \mathrm{h}, \epsilon_{0}, \mathrm{~m}\) and \(\mathrm{e}\) are constant.
So, \(\frac{v}{E}\) is proportional to principal quantum number \(\mathrm{n}\).