The work-energy theorem states that the net work done by the forces on an object equals the change in its kinetic energy.
Work done, \((W)=\Delta K=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}\)
Where \(m\) is the mass of the object, \(v\) is the final velocity of the object and \(u\) is the initial velocity of the object.
Work-energy theorem for a variable force:
Kinetic energy, \(K=\frac{1}{2} m v^{2}\)
\( \frac{d K}{d t}=\frac{d\left(\frac{1 }{ 2} m v^{2}\right)}{d t} \)
\(\Rightarrow \frac{d K}{d t}=m \frac{d v}{d t} v\)
\(\Rightarrow \frac{d K}{d t}=m a v\)
\(\Rightarrow \frac{d K}{d t}=F v \)
\(\Rightarrow \frac{d K}{d t}=F \frac{d x}{d t} \)
\(\Rightarrow d K=F d x\)
On integrating, we get
\( \int_{K_{i}}^{K_{f}} d K=\int_{x_{i}}^{x_{f}} F d x \)
\(\Rightarrow \Delta K=\int_{x_{i}}^{x_{f}} F d x\)
From the work-energy theorem, a change in kinetic energy equals the work done.
\( \Delta K=\int_{x_{i}}^{x_{f}} F d x \)
\(\Rightarrow \Delta K=\int_{-a}^{a}\left(P y^{2}+Q y+R\right) d y \)
\(\Rightarrow \Delta K=\left[\frac{P y^{3}}{3}+\frac{Q y^{2}}{2}+R y\right]_{-a}^{a} \)
\(\Rightarrow \Delta K=\left[\left(\frac{P a^{3}}{3}+\frac{Q a^{2}}{2}+R a\right)-\left(\frac{-P a^{3}}{3}+\frac{Q a^{2}}{2}-R a\right)\right] \)
\(\Rightarrow \Delta K=\frac{2 P a^{3}}{3}+2 R a\)