Self Studies

Mathematics Test - 12

Result Self Studies

Mathematics Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(x+\frac{1}{x}=4\), then find the value of \(x^{4}+\frac{1}{x^{4}}\).

    Solution

    Given,

    \(x+\frac{1}{x}=4\)

    By squaring,

    \(\Rightarrow x^{2}+\frac{1}{x^{2}}+2=16\)

    \(\Rightarrow x^{2}+\frac{1}{x^{2}}=14\)

    By squaring again,

    \(\Rightarrow x^{4}+\frac{1}{x^{4}}+2=196\)

    \(\Rightarrow x^{4}+\frac{1}{x^{4}}=196-2=194\)

  • Question 2
    4 / -1

    If f(x) = xa + ax and g(x) = xa – ax, find the value of f(x) + g(x).

    Solution

    f(x) + g(x) = 2xa

    Hence option A is correct.

  • Question 3
    4 / -1

    The order of a differential equation whose solution is y = a cos x + b sin x, where a and b are arbitrary constants, is

    Solution

    The order of differential equation = number of arbitrary constants = 2

    Hence option B is correct.

  • Question 4
    4 / -1

    \(a=\frac{\sqrt{7}+\sqrt{11}}{\sqrt{11}-\sqrt{7}} ;\) and \(b=\frac{1}{a}\);then the value of\(\left(6 a^{2}-35 a b+6 b^{2}\right)\) is:

    Solution

    \(\because b=\frac{1}{a} \)

    \(\Rightarrow a b=1\)

    \(a^{2}+b^{2}=a^{2}+\frac{1}{a^{2}}\)

    \(=\left(a+\frac{1}{a}\right)^{2}-2\)

    \(=\left(\frac{\sqrt{7}+\sqrt{11}}{\sqrt{11}-\sqrt{7}}+\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}\right)^{2}-2\)

    \(=\left(\frac{11+7+2 \sqrt{77}+11+7-2 \sqrt{11}}{11-7}\right)^{2}-2\)

    \(=\left(\frac{36}{4}\right)^{2}-2=81-2=79\)

    \(6 a^{2}-35 a b+6 b^{2}=6\left(a^{2}+b^{2}\right)-35 \times 1\)

    \(=6 \times 79-35\)

    \(=474-35=439\)

  • Question 5
    4 / -1

    \(\int \cos \sqrt{x} d x=?\)

    Solution
    Putting \(x=t^{2}\) and \(d x=2 t\) dt. we get. \(1=2 \int t \cos t d t=2 \cdot\left[t \sin t-\int \sin t d t\right]+C\)
    \(=2 t \sin t+2 \cos t+C\)
    \(-2[\sqrt{x} \sin \sqrt{x}+\cos \sqrt{x}]+C\)
  • Question 6
    4 / -1
    The order and degree of the differential equation \(r^{2} \frac{d^{2} y}{d x^{2}}=\) \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}\) are respectively
    Solution

    Square the differential equation to remove the fraction,

    We get, order = degree = 2

  • Question 7
    4 / -1

    The diagonals of a parallelogram PQRS are along the lines x + 3y = 4 and 6x - 2y = 7. Then PQRS must be a

    Solution

    The slope of the first line: - 1/3

    Slope of second line is: 3

    Hence the diagonals are perpendicular, which is the property of a Rhombus.

  • Question 8
    4 / -1
    If \(y=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right),\) then \(\frac{d y}{d x}=\)
    Solution
    \(y=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)\)
    \(=\tan ^{-1}\left\{\frac{\sin (2 \alpha)}{1+\cos (2 \alpha)}\right\}\)
    where \(x=2 a\)
    \(=\tan ^{-1}\left(\frac{2 \sin \alpha \cos \alpha}{2 \cos ^{2} \alpha}\right)\)
    \(=\tan ^{-1}(\tan \alpha)\)
    \(\Rightarrow y=\alpha=\frac{1}{2} x\)
    \(\Rightarrow y=\frac{x}{2}\)
    \(\frac{d y}{d x}=\frac{1}{2}\)
  • Question 9
    4 / -1

    \(\int e 3 \log x\left(x^{4}+1\right)^{-1} d x\) is equal to

    Solution
    \(\int e^{3} \log x\left(x^{4}+1\right)^{-1} d x=\int e^{\log x^{3}} \frac{1}{x^{4}+1} d x\)
    \(=\int \frac{x^{3}}{x^{4}+1} d x=1 / 4 \log \left(x^{4}+1\right)+C\)
  • Question 10
    4 / -1

    If the sets A and B are defined as

    A = {(x, y) : y =1/x, 0 ≠ x ∈ R}

    B = {(x, y) : y = -x, x ∈ R}, then

    Solution
    since \(y=\frac{1}{x} y=-x\) meet when \(-x=\frac{1}{x} \Rightarrow x^{2}=-1\)
    which does not give any real value of \(x\).
    Hence, \(A \cap B=\emptyset\).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now