Self Studies

Mathematics Test - 21

Result Self Studies

Mathematics Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The approximate value of square root of 25.2 is

    Solution
    Let \(f(x)=\sqrt{x}\)
    Now, \(f(x+\delta x)-f(x)=f^{\prime}(x) \cdot \delta x=\frac{\delta x}{2 \sqrt{x}}\)
    We may write, \(25.2=25+0.2\)
    Taking \(x=25\) and \(\delta x=0.2\) We have \(f(25.2)-f(25)=\frac{0.2}{2 \sqrt{25}}=0.02\)
    \(\therefore f(25.2)=f(25)+0.02\)
    \(=\sqrt{25}+0.02=5.02\)
    \(\Rightarrow \sqrt{(25.2)}=5.02\)
  • Question 2
    4 / -1
    Let \(f(x)=\left\{\begin{array}{l}1+\sin x, x<0 \\ x^{2}-x+1, x \geq 0\end{array}\right.\). Then
    Solution

    f is continuous at ‘0’ and f'(0-)>0 and f'( 0 +)<0 . Thus f has a local maximum at ‘0’.

    Hence option A is correct.

  • Question 3
    4 / -1

    If one root of the quadratic equation \(a x^{2}+b x+c=0\) is equal to the \(n^{\text {th }}\) power of the other root, then the value of \(\left(a c^{n}\right)^{\frac{1}{n+1}}+\left(a^{n} c\right)^{\frac{1}{n+1}}\)

    Solution
    Let \(\alpha, \alpha^{n}\) be two roots,
    Then \(\alpha+\alpha^{n}=-\frac{b}{a^{\prime}} \alpha \alpha^{n}=\frac{c}{a}\)
    Eliminating \(\alpha,\) we get \(\left(\frac{9}{a}\right)^{\frac{1}{n+1}}+\left(\frac{c}{a}\right)^{\frac{n}{n+1}}=-\frac{b}{a}\)
    \(\Rightarrow a \cdot a^{-\frac{1}{n+1}}, c^{\frac{1}{n+1}}+a \cdot a^{-\frac{n}{n+1}}, c^{\frac{n}{n+1}}=-b\)
    or \(\left(a^{n} c\right)^{\frac{1}{n+1}}+\left(a c^{n}\right)^{\frac{1}{n+1}}=-b\)
  • Question 4
    4 / -1

    If \(3 \sin ^{-1} \frac{2 x}{1+x^{2}}-4 \cos ^{-1} \frac{1-x^{2}}{1+x^{2}}+2 \tan ^{-1} \frac{2 x}{1+x^{2}}=\frac{\pi}{3}\) then \(x=\)

    Solution

  • Question 5
    4 / -1

    If \(\lim _{x \rightarrow 0}(1+a \sin x)^{\text {cosec x}}=3,\) then a is

    Solution
    \(\quad=\lim _{x \rightarrow 0}(1+a \sin x)^{\operatorname{cosec} x}\)
    \(\left[1^{\infty}\right.\) form \(] \Rightarrow \lim _{x \rightarrow 0} e^{\operatorname{cosec} x \cdot a \sin x}=e^{a}\)
    \(\therefore e^{a}=3 \Rightarrow a=\log _{e} 3=\ln 3\)
  • Question 6
    4 / -1

    If the tangent to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{a}\) at any point on it cuts the axes OX and OY at P and Q respectivelv. then \(\mathrm{OP}+\mathrm{OQ}\) is

    Solution

    \(\sqrt{x}+\sqrt{y}=\sqrt{a} \ldots \ldots\)

    \(\Rightarrow \frac{1}{2 \sqrt{x}}+\frac{1 d y}{2 \sqrt{y} d x}=0\)


    \(\therefore \frac{d y}{d x}=-\frac{\sqrt{y}}{\sqrt{x}}\)
    Equation of tangent at \(\left(x_{1} y_{1}\right)\) isy \(-y_{1}=-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}}\left(x-x_{1}\right)\)
    \(\Rightarrow \frac{x}{\sqrt{x_{1}}}+\frac{y}{\sqrt{y_{1}}}=\sqrt{a} ; \Rightarrow o p=\sqrt{a} \sqrt{x_{1}}, O Q=\sqrt{a} \sqrt{y_{1}}\)
    \(\therefore O P+O Q=\sqrt{a}\)
  • Question 7
    4 / -1

    \(\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)=\)

    Solution
    Let \(0 \leq x \leq \pi\)
    So, \(\cos ^{-1} \frac{4}{5}=x \Rightarrow \cos x=\frac{4}{5} \quad \ldots .\) (i)
    Now \(\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)=\sin \left(\frac{x}{2}\right)\)
    \(\ldots .\) (ii)
    From (i), \(\cos x=\frac{4}{5} \Rightarrow 1-2 \sin ^{2} \frac{x}{2}=\frac{4}{5}\)
    \(\Rightarrow 2 \sin ^{2} \frac{x}{2}=1-\frac{4}{5}=\frac{1}{5} \Rightarrow \sin \frac{x}{2}=\sqrt{\frac{1}{10}}\)
  • Question 8
    4 / -1

    With reference to a universal set, the inclusion of a subset in another, is relation, which is

    Solution
    since \(A \subseteq A \ldots\) Relation \(^{\prime} \subseteq^{\prime}\) is relfexive
    since \(A \subseteq B, B \subseteq C \Rightarrow A \subseteq C\)
    \(\therefore\) Relation ' \(\subseteq\) ' is transitive.
    But \(A^{\prime} \subseteq^{\prime} B, \Rightarrow B \subseteq A \ldots\) relation is not symmetric.
  • Question 9
    4 / -1

    The value of \(\sqrt{\left(\log _{0.5}^{2} 4\right)}\) is

    Solution
    \(\sqrt{\left(\log _{0.5}^{2} 4\right)}=\sqrt{\left\{\log _{0.5}(0.5)^{-2}\right\}^{2}}=\sqrt{(-2)^{2}}=2\)
    Hence option C is correct.
  • Question 10
    4 / -1

    Let \(g(x)\) be an antiderivative for \(f(x) .\) Then \(\ln \left(1+(g(x))^{2}\right)\) is an antiderivate for

    Solution
    Given \(\int f(x) d x=g(x)\)
    \(g^{\prime}(x)=f(x)\)
    Now
    \(\frac{d}{d x}\left(\operatorname{In}\left(1+g^{2}(x)\right)=\frac{2 g(x) g^{\prime}(x)}{1+g^{2}(x)}\right.\)
    \(\frac{2 f(x) g(x)}{1+g^{2}(x)}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now