Self Studies

Mathematics Test - 23

Result Self Studies

Mathematics Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1
    Number of possible tangents to the curve \(y=\cos (x+y),-3 \pi \leq x \leq 3 \pi\) that are
    parallel to the line \(x+2 y=0\), is
    Solution
    We have, \(y=\cos (x+y)\)
    \(\frac{d y}{d x}=\sin (x+y)\left(1+\frac{d y}{d x}\right)\)
    since, the tangents are parallel to the line \(x+2 y=0\) \(-\frac{1}{2}=-\sin (x+y)\left(1-\frac{1}{2}\right)\)
    \(\Rightarrow \sin (x+y)=1\)
    \(\Rightarrow x+y=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{3 \pi}{2}\)
    \(-1 \leq y \leq 1\)
    Hence (c) is the correct answer.
  • Question 2
    4 / -1
    If the function \(f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1,\) where \(a>0,\) attains its maximum and minimum at \(p\) and \(q\) respectively such that \(p^{2}=q\), then a equals
    Solution
    We have, \(f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1\)
    \(\therefore f(x)=6 x^{2}-18 a x+12 a^{2}=0\)
    \(\Rightarrow 6\left[x^{2}-3 a x+2 a^{2}\right]=0\)
    \(\Rightarrow x^{2}-3 a x+2 a^{2}=0 \Rightarrow x^{2}-2 a x-a x+2 a^{2}=0\)
    \(\Rightarrow x(x-2 a)-a(x-2 a)=0\)
    \(\Rightarrow(x-a)(x-2 a)=0 \Rightarrow x=a, x=2 a\)
    Now, \(f^{\prime}(x)=12 x-18 a\)
    \(\therefore f^{\prime}(a)=12 a-18 a=-6 a<0\)
    \(\therefore f(x)\)
    will be maximum at \(x=a\)
    l.e. \(p=a\) Also, \(f^{\prime}(2 a)=24 a-18 a=6 a\)
    \(\therefore f(x)\)
    will be minimum at \(x=2\) a
    I.e.q \(=2 \mathrm{a}\)
    Given, \(p^{2}=q\) \(\Rightarrow a^{2}=2 a \Rightarrow a=2\)
    Hence \((\mathrm{c})\) is the correct answer.
  • Question 3
    4 / -1

    \(4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}\) is equal to

    Solution
    \(\quad\) Since \(2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}\)
    \(\therefore 4 \tan ^{-1} \frac{1}{5}=2\left[2 \tan ^{-1} \frac{1}{5}\right]=2 \tan ^{-1} \frac{\frac{2}{5}}{1-\frac{1}{25}}\)
    \(=2 \tan ^{-1} \frac{10}{24}=\tan ^{-1} \frac{\frac{20}{24}}{1-\frac{100}{576}}=\tan ^{-1} \frac{120}{119}\)
    So, \(4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}=\tan ^{-1} \frac{120}{119}-\tan ^{-1} \frac{1}{239}\)
    \(=\tan ^{-1} \frac{\frac{120}{119} \frac{1}{239}}{1+\frac{120}{119} \frac{1}{239}}=\tan ^{-1} \frac{(120 \times 239)-119}{(119 \times 239)+120}\)
    \(\Rightarrow \tan ^{-1} 1=\frac{\pi}{4}\)
  • Question 4
    4 / -1

    If one root of the equation ax2 + bx + c = 0 be n times the other root, then

    Solution
    Let the roots be \(\alpha\) and \(n \alpha\)
    Sum of roots, \(a+n a=-\frac{b}{a} \Rightarrow a=-\frac{b}{a(n+1)} \quad \ldots . .(i)\)
    and product, a.n. \(a=\frac{c}{a} \Rightarrow \alpha^{2}=\frac{c}{n a}\)
    From (i) and (ii), we get
    \(\Rightarrow\left[-\frac{b}{a(n+1)}\right]^{2}=\frac{c}{n a} \Rightarrow \frac{b^{2}}{a^{2}(n+1)^{2}}=\frac{c}{n a}\)
    \(\Rightarrow n b^{2}=\operatorname{ac}(n+1)^{2}\)
  • Question 5
    4 / -1

    If \(A\) and \(B\) are two given sets, then \(A \cap(A \cap B)\) eis equal to

    Solution
    \(\begin{aligned}\left.\mathrm{A} \cap(A \cap B)^{c}\right)=& A \cap\left(A^{c} \cup B^{c}\right) \\ &=\left(A \cap\left(A^{c}\right) \cup\left(A \cap\left(B^{c}\right)\right.\right.\\ &=\emptyset \cup\left(A \cap\left(B^{c}\right)=A \cap\left(B^{c}\right)\right.\end{aligned}\)
  • Question 6
    4 / -1

    The relation R defined on the set of natural numbers as {(a, b) : a differs from b by 3}, is given by

    Solution

    \(R=\{(a, b): a, b \in N, a-b=3\}=\{((n+3), n): n \in N\}\)

    \(=[(4,1),(5,2),(6,3), \ldots \ldots\}\)

  • Question 7
    4 / -1

    The value of log3 4log5log6log7log8log9 is

    Solution

  • Question 8
    4 / -1

    \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot x-\cos x}{(\pi-2 x)^{3}}\) is equal to

    Solution
    \[
    \lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot x-\cos x}{(\pi-2 x)^{3}}
    \]
    Let \(x=\frac{\pi}{2}+t\)
    If \(x \rightarrow \frac{\pi}{2}, t \rightarrow 0\)
    \[
    \begin{array}{l}
    \lim _{t \rightarrow 0} \frac{\sin t-\tan t}{-8 t^{3}} \\
    =\lim _{t \rightarrow 0} \frac{\left(t-\frac{t^{3}}{3 !}+\frac{t^{5}}{5 !}+\ldots\right)-\left(t+\frac{t^{3}}{3}+\frac{2 t^{5}}{15}+\ldots\right)}{-8 t^{3}}
    \end{array}
    \]
    \(=\frac{1}{16}\)
    We can put \(x=\frac{\pi}{2}-t\) and we'll get L.H.L also same. since L.H.L = R.H.L the limit exists and is \(=\frac{1}{16}\)
  • Question 9
    4 / -1

    The number of values of x where the function f(x) = 2 (cos 3x + cos3xattains its maximum, is

    Solution
    We have,
    \[
    \begin{array}{l}
    f(x)=2(\cos 3 x+\cos \sqrt{3} x) \\
    =4 \cos \left(\frac{3+\sqrt{3}}{2}\right) x \cos \left(\frac{3-\sqrt{3}}{2}\right) x \leqslant 4
    \end{array}
    \]
    and it is equal to 4 when both \(\cos \left(\frac{3+\sqrt{3}}{2}\right) x\) and \(\cos \left(\frac{3-\sqrt{3}}{2}\right)\)
    Are equal to 1 for a value of \(x\). This is possible only when \(x=0\).
    Hence (a) is the correct answer.
  • Question 10
    4 / -1

    \(\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\)

    Solution
    \(\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}\)
    \(=\frac{1}{2} \sin 20^{\circ} \sin 60^{\circ}\left(2 \sin 40^{\circ} \sin 80^{\circ}\right)\)
    \(=\frac{1}{2} \sin 20^{\circ} \sin 60^{\circ}\left(\cos 40^{\circ}-\cos 120^{\circ}\right)\)
    \(=\frac{1}{2} \cdot \frac{\sqrt{3}}{2} \sin 20^{\circ}\left(1-2 \sin ^{2} 20^{\circ}+\frac{1}{2}\right)\)
    \(=\frac{\sqrt{3}}{4} \sin 20^{\circ}\left(\frac{3}{2}-2 \sin ^{2} 20^{\circ}\right)\)
    \(=\frac{\sqrt{3}}{8}\left(3 \sin 20^{\circ}-4 \sin ^{3} 20^{\circ}\right)\)
    \(=\frac{\sqrt{3}}{8} \sin 60^{\circ}=\frac{\sqrt{3}}{8} \cdot \frac{\sqrt{3}}{2}=\frac{3}{16}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now