Self Studies

Mathematics Test - 25

Result Self Studies

Mathematics Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The two curves \(x^{3}-3 x y^{2}+2=0\) and \(3 x^{2} y-y^{3}-2=0\)

    Solution
    \(x^{3}-3 x y^{2}+2=0 \ldots(1)\)
    \(3 x^{2} y-y^{3}-2=0 \ldots(2)\)
    On differentiating equations ( 1 ) and (2) w.r.t \(x\), we obtain \(\left(\frac{d y}{d x}\right)_{c 1}=\frac{x^{2}-y^{2}}{2 x y}\) and \(\left(\frac{d y}{d x}\right)_{c 2}=\frac{-2 x y}{x^{2}-y^{2}}\)
    since \(m_{1} \cdot m_{2}=-1\). Therefore the two curves cut at right angles. Hence (a) is the correct answer.
  • Question 2
    4 / -1

    \(\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{x^{3}}{6}}{x^{5}}\) is equal to

    Solution
    \(\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{x^{3}}{6}}{x^{5}} \ldots \ldots\)
    We know expansion of Sinx. \(\sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\ldots \ldots . .\)
    Substituting (2) in (1) we get
    \(\lim _{x \rightarrow 0} \frac{x^{5}}{5 ! \cdot x^{5}}\)
    \(=\frac{1}{5 !}\)
    \(=\frac{1}{120}\)
  • Question 3
    4 / -1

    A relation from P to Q is

    Solution

    A relation from P to Q is a subset of P × Q.

    Hence option D is correct.

  • Question 4
    4 / -1

    \(3 \cos ^{-1} x-\pi x-\frac{\pi}{2}=0\) has :

    Solution

    \(3 \cos ^{-1} x-\pi x+\frac{\pi}{2}\) Clearly graphs of \(y=3 \cos ^{-1} x\) and \(y=\pi x+\frac{\pi}{2}\) in the domain of \(\cos ^{-1} x\) i.e., in [-1,1] intersect only once, therefore there is only one solution of the given equation.
  • Question 5
    4 / -1
    Let \(f(x)=\frac{2 \sin ^{2} x-1}{\cos x}+\frac{\cos x(2 \sin x+1)}{1+\sin x}\) then \(\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x\) equals
    (where \(c\) is the constant of integeration)
    Solution
    \(\frac{\cos x(1+2 \sin x)}{1+\sin x}-\frac{\cos ^{2} x-\sin ^{2} x}{\cos x}\)
    \(=\frac{\cos ^{2} x(1+2 \sin x)-(1+\sin x)\left(\cos ^{2} x-\sin ^{2} x\right)}{\cos x(1+\sin x)}=\frac{\sin x(1-\sin x)+\sin ^{2} x}{\cos x}=\tan x\)
    \(=\frac{\sin x \cos ^{2} x+\sin ^{2} x(1+\sin x)}{\cos x(1+\sin x)}=\frac{x}{\sin x}\)
    =ex tanx + c
  • Question 6
    4 / -1

    If the sum of two of the roots of x3 + px2 + qx + r = 0is zero, then pq =

    Solution
    Given that, \(a+\beta=0\)
    \(\alpha+\beta+y=-p \Rightarrow y=-p\)
    Substituting \(\mathrm{Y}=-\mathrm{p}\) in the given equation
    \(\Rightarrow-p^{3}+p^{3}-p q+r=0 \Rightarrow p q=r\)
  • Question 7
    4 / -1

    \(\int \frac{\cos ^{4} x d x}{\sin ^{3} x\left(\sin ^{5} x+\cos ^{5} x\right)^{\frac{3}{5}}}=-\frac{1}{2}\left(1+\cot ^{A} x\right)^{B}+C\) then \(\mathbf{A B}=\)

    Solution
    \(I=\int \frac{\cos x^{4} d x}{\sin ^{3} x\left(\sin ^{5} x+\cos ^{5} x\right)^{\frac{3}{5}}}\)
    \(=\int \frac{\operatorname{cosec}^{2} x \cot ^{4} x d x}{\left(1+\cot ^{5} x\right)^{3 / 5}}\)
    \(1+\cot ^{5} x=t\)
    \(5 \cot ^{4} x\left(-\operatorname{cosec}^{2} x\right) d x=d t\)
    \(=\frac{-1}{5} \int \frac{d t}{t^{3 / 5}}\)
    \(=\frac{-t^{2 / 5}}{2}\)
    \(=\frac{-1}{2}\left(1+\cot ^{5} x\right)^{2 / 5}+C\)
  • Question 8
    4 / -1

    \(\int \frac{(1+\sqrt{\tan x})\left(1+\tan ^{2} x\right)}{2 \tan x} d x\) equal \(\operatorname{to}\)

    Solution
    \(\int \frac{1}{2 \sin x \cos x} d x+\frac{1}{2} \int \frac{\sqrt{\tan x}}{\sin x \cos x} d x\)
    \(=\frac{1}{2} \int \frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x} d x+\frac{1}{2} \int \frac{\sec ^{2} x}{\sqrt{\tan x}} d x=\log \left(\tan ^{2} x\right)+\sqrt{\tan x}+c\)
  • Question 9
    4 / -1

    sin-1 (sin 10 ) =

    Solution
    \(3 \pi<10<3 \pi+\frac{\pi}{2} \therefore 10 \mathrm{rad} \in Q_{3}\)
    \(\therefore-\frac{\pi}{2}<3 \pi-10<0 \therefore 3 \pi-10 \in Q_{4}\)
    Also \(\sin (3 \pi-10)=\sin 10\)
    Hence \(\sin ^{-1}(\sin 10)=\sin ^{-1} \sin (3 \pi-10)=3 \pi-10\)
  • Question 10
    4 / -1

    The coefficient of x in the equation x2 + px + q = 0 was taken as 17 in place of 13, its roots were found to be -2 and -15, the roots of the original equation are

    Solution
    Let the equation (in written form) be \(x^{2}+17 x+q=0\) Roots are -2,-15
    So \(q=30\) And correct equation is \(x^{2}+13 x+30=0\).
    Hence roots are \(-3,-10 .\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now