Self Studies

Trignometric Ratios, Functions and Equations Test - 3

Result Self Studies

Trignometric Ratios, Functions and Equations Test - 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.83

    The value of tan 660 °cot 1200 °is

    Solution

    tan(660o ) cot(1200o )
    ⇒tan(720 - 60o ) cot(1080+120o )
    ⇒- tan60o cot120o
    ⇒- tan60o (-cot60o )
    ⇒1

  • Question 2
    2 / -0.83

    Find sin 150 °

    Solution

    As we know that : sin(180o −x) = sin(x)
    Plug in x = 30 to get
    sin(180o −30 °) = sin(30 °)
     ⇒1/2
    sin(90+θ) = cos θ
    sin (90+60)=cos60=1/2

  • Question 3
    2 / -0.83

    Cos(-435 °) =

    Solution

    Since, cos(−x) = cosx
    ⇒cos(−435 °) = cos(435 °)
    = cos(360 °+ 75 °)
    = cos(75o)
    = cos(90 °−15 °)
    = sin15 °

  • Question 4
    2 / -0.83

    Find the value of  tan22o + tan23o + tan22o .tan23o  

    Solution

    To solve this problem, we 'll use the tangent addition formula:

    • tan(A + B) = (tanA + tanB) / (1 - tanA * tanB)

    We can rewrite 45 °as 22 °+ 23 °. So,

    • tan(45 °) = tan(22 °+ 23 °)

    Using the tangent addition formula:

    • 1 = (tan22 °+ tan23 °) / (1 - tan22 °* tan23 °)

    Cross-multiplying, we get:

    • 1 - tan22 °* tan23 °= tan22 °+ tan23 °

    Rearranging the terms, we get:

    • tan22 °+ tan23 °+ tan22 °.tan23 °= 1

    Therefore, the value of tan22 °+ tan23 °+ tan22 °.tan23 °is 1.

  • Question 5
    2 / -0.83

    The value of (sec 390 °) is

    Solution

    sec 390 °
    = sec(360 °+ 30 °)
    = sec 30 °= 2/(√3)

  • Question 6
    2 / -0.83

    The value of  cos 7 π/12

    Solution

    cos(7 π/12)
    = cos(3 π/12 + 4 π/12)
    = cos(π/4 + π/3)
    Use trig identity: cos (a + b) = cos a.cos b - sin a.sin b
    cosa = cos(π/4) = √2/2;
    cosb = cos(π/3) = 1/2
    sina = sin(π/4) = √2/2;
    sina = sin(π/3) = √3/2
    cos(7 π/12) = cos(π/4 + π/3)
    =>(√2/2)(1/2) −(√2/2)(√3/2) 
    = (√2 −√6)/4
    = √2(1 - √3)/2 √2 √2
    = (1 - √3)/2 √2

  • Question 7
    2 / -0.83

    Find (tan 210 °)

    Solution

    tan210 °
    = tan (180 °+ 30 °)
    = tan30 °
    = 1/√3

  • Question 8
    2 / -0.83

    The value of  

    Solution

    (cos135 °- cos120o)/ (cos135 °+ cos1200)
    = cos(180 °- 45 °) - cos(180 °- 60 °)/cos(180 °- 45 °) + cos(180 °-60 °)
    =  (-cos45 °+ cos60 °)/(- cos45 °- cos60 °)
    =  (-1/√2 + 1/2)/(- 1 √2 - 1/2)
    =  -2 + √2 / -2 - √2  
    = (-2 + √2 / -2 - √2) * (-2 + √2)/(-2 + √2)
    =  (-2 + √2)2/(-2)2 - (√2)2
    = (4 + 2  - 4 √2) / 2
    = (6 - 4 √2)/2
    = 3 - 2 √2

  • Question 9
    2 / -0.83

    Solution

    Correct Answer : a

    Explanation :  {1 + cot α- sec(π/2 + α)} {1 + cot α+ sec(π/2 + α)}

    As we know that (a-b)(a+b) = a2 - b2

    (1 + cot α)2 - [sec(π/2 + α)]2

    1 + 2cot α+ cot2 α- (-cosec α)2

    2cot α+ 1 + cot2 α- cosec2 α

    As we know that 1 + cot2 α= cosec2 α

    = 2cot α+ cosec2 α- cosec2 α

    = 2cot α

  • Question 10
    2 / -0.83

    Assuming A, B, A + B and A –B to be positive acute angles, find A and B when tan (A + B) = √3 and tan (A –B) = 1

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now