Self Studies

Trignometric Ratios, Functions and Equations Test - 5

Result Self Studies

Trignometric Ratios, Functions and Equations Test - 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.83

    sin 51 °+ cos 81 °= ?

    Solution

    sin  51 ° + cos  81 °
    = sin  51 ° + cos  ( 90 ° − 9 °)
    = sin  51 °+ sin  9 °

    = 2sin  30 ° cos  21 °

    = cos(21 °)

  • Question 2
    2 / -0.83

    cos9y - cos5y =

    Solution

    cosA - cos B = -2sin[(A+B)/2] sin [(A-B)/2]

    So substituting, A = 9y and B = 5y, we get

    cos9y - cos5y = -2sin7y sin2y

  • Question 3
    2 / -0.83

    What is the value of sin 35 θ–sin 55 θ?

    Solution

    sinA - sinB = 2cos(A+B)/2 sin(A-B)/2
    sin 35 –sin55 = 2cos(35+55)/2 sin(35-55)/2
    = 2cos45 (-sin10)
    = 2(√2/2) (-sin10)
    = -√2 sin10

  • Question 4
    2 / -0.83

    Sin250   sin550   = ?

    Solution

    sin25 °sin55 °
    Multiply and divide by '2 '
    1/2(2 sin25 °sin55 °)
    cos(a-b) - cos(a+b) = 2sina sinb
    1/2[cos(a-b) - cos(a+b)] = sina sinb
    1/2[cos(25 °- 55 °) - cos(25 °+ 55 °)] = sin25 °sin55 °
    1/2[cos(-30 °) - cos(80 °)] = sin25 °sin55 °
    1/2[cos(30 °) - cos(80 °)] = sin25 °sin55 °

  • Question 5
    2 / -0.83

    In a triangle ABC, the value of sin(A) + sin(B) + sin(C) is:

    Solution

    Finding the value of   sinA + sinB + sinC in a triangle.

    In any triangle, the sum of all the interior angles is always  180 °.

    Therefore, In the triangle  ABC, A + B + C = 180 °

    Now, solving for  sinA + sinB + sinC:


    Hence, Option (B) is correct.

  • Question 6
    2 / -0.83

    In a triangle ABC, cosA - cosB =

    Solution

  • Question 7
    2 / -0.83

    cosA + cos (120 °+ A) + cos(120 °–A) =

    Solution

    CosA + Cos(120 °- A) + Cos(120 °+ A)
     cosA + 2cos(120 °- a + 120 °+ a)/(2cos(120 °- a - 120 °- a)
    we know that formula
    (cos C+ cosD = 2cos (C+D)/2.cos (C-D) /2)
    ⇒cosA + 2cos120 °cos(-A)
    ⇒cosA+ 2cos (180 °- 60 °) cos(-A)
    ⇒cosA + 2(-cos60 °) cosA
    ⇒cos A - 2 * 1/2cos A
    ⇒cosA - cosA
    ⇒0

  • Question 8
    2 / -0.83

    What is the value of cos 1050   + cos750 ?

    Solution

    cos105 °+ cos75 °
    = cos(90 º+ 15) + cos(90 °- 15) 
    = - sin15 + sin15 = 0

  • Question 9
    2 / -0.83

    In a triangle ABC, if angle A = 72 °, angle B = 48 °and c = 9 cm then angle C is

    Solution

    The sum of the interior angles of any triangle is always 180 °. Therefore, we can calculate angle C as:
    C = 180 °−(A + B)
    Substitute the values of A and B :
    C = 180 °−(72 °+ 48 °)
    C = 60 °
    Thus, angle Ĉ (angle C) is 60 ° .

  • Question 10
    2 / -0.83

    Value of cos350   cos450  is

    Solution

    cos35o cos45o
    Multiply and divide numerator and denominator by 2
    1/2{2cos35o cos45o }
    = 1/2{cos(35o +45o ) + cos(35o -45o )}
    = 1/2{cos80o + cos(-10o )}   { cos(-x) = cosx  
    = {cos80o + cos10o }/2

  • Question 11
    2 / -0.83

    cos(A) - cos(3A) =

    Solution

    We will use the cosine subtraction identity:

    For cos(A) - cos(3A), substitute A and 3A into the identity:

    Simplify:

    cos(A) −cos(3A) = −2sin(2A) sin(−A)
    Since sin(−A) = −sin(A), we get:
    cos(A) −cos(3A) = −2sin(2A) (−sin(A))
    cos(A) −cos(3A) = 2sin(2A) sin(A)

  • Question 12
    2 / -0.83

    Solution

    sin(A + B) - sin(A - B) = 2cosA sinB  
    = 2cos(π/4)sinX
    = 2 ×1/√2 sin X
    = √2sinX

  • Question 13
    2 / -0.83

    sin (n + 1)x cos(n + 2)x - cos(n + 1)x sin(n + 2)x =

    Solution

    sin(n + 1)x cos(n + 2)x - cos(n + 1)x sin(n + 2)x
    ⇒sin[(n + 1)x - (n + 2)x] 
    As we know that sin(A - B) = sinA cosB - cosA sinB
    ⇒sin(n + 1- n - 2)
    sin (-x) 
    = -sinx

  • Question 14
    2 / -0.83

    cos 15 °–sin 15 °= ?

    Solution

    cos 15 °- sin 15 °
    = cos(45 °- 30 °) - sin(45 °- 30 °)
    = (cos45 °cos30 °+ sin45 °sin30 °) - (sin45 °cos30 °- cos45 °sin30 °)
    = [√3/(2 √2) + 1/(2 √2)] - [√3/(2 √2) - 1/(2 √2)]
    = 2/(2 √2)
    = 1/√2

  • Question 15
    2 / -0.83

    Find the value of cos18º + sin36º

    Solution

    sin36º  = cos(90º  - 36º ) = cos54º
    So,cos18º  + sin36º = cos18º  + cos54º  = 2cos 36º sin(-18º ) = -2cos36º sin18º

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now