Self Studies

Trignometric Ratios, Functions and Equations Test - 8

Result Self Studies

Trignometric Ratios, Functions and Equations Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.83

    If tan A and tan B are the roots of the quadratic equation x2  – ax + b = 0, then the value of sin2  (A + B)

    Solution

    We know that,
    If  αand β are the roots of the quadratic equation :

    We have,

  • Question 2
    2 / -0.83

    If A = tan 6 ºtan 42 ºand B = cot 66 ºcot 78 º, then

    Solution

    A=tan6 °tan42 °and B=cot66 °cot78 °
    A/B=tan6 °tan42 °tan66 °tan78 °
    Using tan(60-x)tanxtan(60+x)=tan3x for x=18 °we get
    tan42 °tan18 °tan78 °=tan54 °...(1)
    for x=6 °we get
    tan54 °tan6 °tan66 °=tan18 °...(2)
    Eliminating tan54 °between (1) and (2)
    we get
    tan6 °tan42 °tan66 °tan78 °=1
    Hence A/B=1.

  • Question 3
    2 / -0.83

     =

    Solution

    We have : cos 290 °= cos (270 °+20 °) = sin 20 ° 
    . . . . . . . . sin 250 °= sin (270 °-20 °) = - cos 20 °. 
    ∴( 1 / cos 290 °) + (1 / √3 sin 250 °) 
    = ( 1 / sin 20 °) + { 1 / [ √3 ( - cos 20 °) ] } 
    = ( √3 cos 20 °- sin 20 °) / ( √3 sin 20 °cos 20 °) 
    = 2 [ (√3 /2 ) cos 20 °- (1/2) sin 20 °] / [ (√3/2) ( 2 sin 40 °] 
    = 2 ( sin 60 °cos 20 °- cos 60 °sin 20 °) / ((√3/2) sin 40 °) 
    = 2 sin (60 °- 20 °) / ((√3 /2) sin 40 °) 
    = 4 / √3
    Rationalise it, we get 4(3)½/3

  • Question 4
    2 / -0.83

    If A + B + C = p &sin   = k sin C/2,then tan A/2  tan B/2  =

    Solution

    Applying componendo and dividendo  
    [sin(A+C/2) + sin (C/2)]/[sin(A+C/2) - sin (C/2)] = (k+1)/(k-1)
    ⇒[2sin(A+C)cos A/2]/[2cos(A+C)sin A/2] ​= (k+1)/(k −1)
    ⇒[tan(A+C)/2]/(tan A/2) ​= (k+1)/(k-1)
    ​⇒[tan(π−B)/2]/(tan A/2) = (k+1)/(k-1)
    ​⇒1/(tan A/2 tan B/2) = (k+1)/(k-1)   
    ⇒tan A/2 tan B/2 = (k-1)/(k+1)

  • Question 5
    2 / -0.83

    In any triangle ABC, which is not right angled S cos A . cosec B . cosec C is equal to

  • Question 6
    2 / -0.83

    If 3 cos x + 2 cos 3x = cos y, 3 sin x + 2 sin 3x = sin y, then the value of cos 2x is

    Solution

    ⇒3cosx + 2cos3x = cosy

    Squaring


     

    ⇒9+4+12cos(3x −x) = 1

    ⇒12cos(2x) =−12

    ⇒cos2x =−1

  • Question 7
    2 / -0.83

    If cos a + cos b = a, sin a + sin b = b and a - b = 2q, then   =

    Solution

    we have
    cos α+ cos β= a
    sin α+ sin β= b
    α−β= 2 θ
    so, (cos α+ cos β)2 = a2
    cos2 α+ cos2 β+ 2cos αcos β= a2 -----(i)
    and (sin α+ sin β)2 = b2
    sin2 α+ sin2 β+ 2sin αsin β= b2 -----(ii)
    adding (i) and (ii)
    2 + cos(α−β) = a2 + b2
    [sin2 α+ cos2 α= 1sin2 β+ cos2 β= 1cos αcos β+ sin αsin β= cos(α−β)
    a2 + b2 = 2 + 2cos(α−β) = 2 + 2cos2 θ
    (cos θ)/(cos3 θ) = (4cos3 θ.3cos θ)/cos θ
    = 4cos2 θ−3 →4cos2 θ=3------(iii)
    a2 + b2 = 2 + 2(2cos2 θ−1)
    = 2 + 4cos2 θ−2
    ∴4cos2 θ= a2 + b2
     from (iii)
    ∴3 = a2 + b2
    a2 + b2 −3 = 0

  • Question 8
    2 / -0.83

    If A + B + C = p &cos A = cos B . cos C then tan B . tanC has the value equal to

    Solution

    Given cosA  = cosB * cosC  ------- (1)

    Apply cos on both sides, we get

    We know that Cos(A + B) = cosAcosB - sinA sinB and cos(180 - A) = -cosA.

    = >cosB cosC - sinB sinC = -cosA

    = >cosB cosC - sinB sinC = -cosB cosC(From (1))

    = >cosB cosC - sinB sinC + cosB cosC = 0

    = >2cosB cosC = sinB sinC

    = >2 = sinB sinC/cosB cosC.
    Now,
    We know that TanA = sinA/cosA.
    Therefore TanB TanC = sinA sinB/cosB cosC
    2.

  • Question 9
    2 / -0.83

    The value of tan + 2 tan  π/8  + 4 is equal to

    Solution

    ANSWER :- b

    Solution :- By using the identity : tan A = cot A - 2cot 2A

    = { cot π/16 - 2 cot 2(π/16) } + 2{ cot π/8 - 2cot 2(π/8)} + 4

    = cot π/16 - 2cot π/8 + 2cot π/8 - 4cot π/4 + 4

    = cot π/16 - 4(1) +4

    = cot π/16

  • Question 10
    2 / -0.83

    The value of cos π/19 +cos+cos+...+ cos 17 π/19  is equal to

    Solution

    cos (π/19) + cos (3 π/19) + cos (5 π/19) +…+ cos (17 π/19)

    Multuiply and divide with 2sin(π/19)

    =1/2sin(π/19) [2sin(π/19) cos (π/19) +2sin(π/19) cos (3 π/19) + 2sin(π/19) cos (5 π/19) +…+2sin(π/19) cos (17 π/19)]

    We know that

    sin(2A) = 2sinAcosA
    2sinAcosB = sin(A+B) + sin(A-B)

    =1/2sin(π/19)[sin(2 π/19) +sin(4 π/19) +sin(-2 π/19) +sin(6 π/19) +sin(-4 π/19)+ …+sin(18 π/19) +sin(-16 π/19)]

    =1/2sin(π/19)[sin(18 π/19)]

    =1/2sin(π/19)[sin(π-π/19)]

    =1/2sin(π/19)[sin(π/19)]

    =1/2

  • Question 11
    2 / -0.83

    Consider a right angle triangle PQR, if PQ is 27 and QR is 17 then the value of angle P is

    Solution

    Correct Answer : a

    Explanation : Since ∆PQR is right angled at Q, PR is it 's hypotenuse.

    QR is the opposite side of angle P and PQ is the adjacent side for the angle P.

    So QR/PQ = opp/adj. = tan P

    =>17/27 = tan P  

    =>0.62 = tan P

    =>angle P = 32.0 °

  • Question 12
    2 / -0.83

    If f(q) = sin4  q + cos2  q, then range of f(q) is

  • Question 13
    2 / -0.83

    If 2 cos x + sin x = 1, then value of 7 cos x + 6 sin x is equal to

    Solution

    Cosx = (1-tan2 x/2)/(1+tan2 x/2)

    Sin x = (2tanx/2)/(1+tan2 x/2)

    2cosx + sinx=1

    2(((1-tan2 x/2)/(1+tan2 x/2)) + ((2tanx/2)/(1+tan2 x/2))=1

    Solving this we get quadratic in tanx/2

    3tan2 x/2 –2tanx/2 -1=0

    (3tanx/2+1)(tanx/2 -1)=0

    Tanx/2 =1 or -1/3

    7cosx + 6sinx

    7((1-tan2 x/2)/(1+tan2 x/2)) + 6((2tanx/2)/(1+tan2 x/2))

    Putting value of Tanx/2, we get

    When

    Tanx/2 =1 Ans=6

    When

    Tanx/2=-1/3 Ans=2

  • Question 14
    2 / -0.83

    If cosec A + cot A = 11/2, then tan A is

    Solution

    cosecA +cotA =11/2  
    or 1/sinA + cosA/sinA = 11/2  
    or 1+ cosA/sinA = 11/2  
    2 cos^2A/ 2 / 2sinA/ cosA/2 = 11/2  
    cotA/2 =11/2  
    so tanA/2 = 2/11  
    so tanA = 2 tanA/2/( 1- tan^2A/2  
    ={ 2* 2/11}/( 1- 4/121) 
    = (4/11)/ (117/121) 
    =4/11* 121/117  
    =44/117

  • Question 15
    2 / -0.83

    If 0 °10  sin x + log10  cos x + log10  tan x is

    Solution

    0 0
    cos x = 3/√10

    sin x = 1/√10

    log  sin x + log  cos x + log tan x  [all logs with base 10]
    = log sinx cos x tanx  
    = log sin2  x = 2 log  sin x
    = 2 log  (10)-1/2  

    = 2X-1/2 log10
    = -1 log10 10

    = –1

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now