
Given, internal angle bisector of A meets BC at D. we know length of AD is given by, \(A D=\frac{2 b c}{b+c} \cos \frac{A}{2}\) Given,
\(\triangle\) ADE is right angled triangle with right angle at \(D\).
\(\angle D=90^{\circ}, \quad \angle A E D=90-\frac{A}{2}\)
Using sine rule in \(\triangle\) ADE, we get
\(\frac{A D}{\sin \angle A E D}=\frac{A E}{\sin \angle A D E}=\frac{D E}{\sin \angle \frac{A}{2}}\)
\(\frac{A D}{\cos \frac{A}{2}}=A E=\frac{D E}{\sin \frac{A}{2}}\)
Substitute the value of AD in above equation, we get
\(A E=\frac{\frac{2 k}{b+c} \cos \frac{A}{2}}{\cos \frac{A}{2}}=\frac{2 b c}{b+c}\)
\(\mathrm{SO}, \mathrm{AE}\) is harmonic mean of \(\mathrm{b}\) and \(\mathrm{c}\). Consider \(\triangle\) ADE and \(\triangle\) ADF \(,\) we know that \(\angle A D E=\angle A D F=90^{\circ}\)
\(\angle D A E=\angle D A F=\angle \frac{A}{2}\)
\(\therefore \angle A E D=\angle A F D=90-\angle \frac{A}{2}\)
Hence \(\triangle\) AEF is isosceles triangle.
\(E F=2 D E=2 A E \sin \frac{A}{2}\)
\(E F=2 \times \frac{2 b c}{b+c} \sin \frac{A}{2}=\frac{4 b c}{b+c} \sin \frac{A}{2}\)
Hence options D is the correct answer.