Self Studies
Selfstudy
Selfstudy

Mathematics Test - 1

Result Self Studies

Mathematics Test - 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    If for the non-singular matrix \(A, A^{2}=I\), then find \(A^{-1}\).

    Solution

    Given, \(A^{2}=I\)

    Since, \(A\) is non-singular matrix.

    \(\therefore|A| \neq 0\), so, \(A^{-1}\) exists.

    Multiplying by \(A^{-1}\) on both sides, we get:

    \(\Rightarrow A^{-1}\left(A^{2}\right)=A^{-1}(I)\)

    \(\Rightarrow \left(A^{-1} A\right) A=A^{-1}\)

    \( \Rightarrow I A=A^{-1} \quad\left(\because A^{-1} A=I\right)\)

    \(\therefore A^{-1}=A \quad(\because I A=A)\)

  • Question 2
    3 / -1

    Let P(x1, y1) and Q(x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equation(s) of parabolas with latus rectum PQ is/are-

    Solution

    \(\frac{x^{2}}{4}+\frac{y^{2}}{1}=1\)

    \(b^{2}=a^{2}\left(1-e^{2}\right)\)

    \(\Rightarrow \mathrm{e}=\frac{\sqrt{3}}{2}\)

    \(\Rightarrow \mathrm{P}\left(\sqrt{3},-\frac{1}{2}\right)\) and \(\mathrm{Q}\left(-\sqrt{3},-\frac{1}{2}\right)\) (given \(\mathrm{y}_{1}\) and \(\mathrm{y}_{2}\) less than \(\left.0\right)\)

    Co-ordinates of mid-point of \(\mathrm{PQ}\) are \(\mathbf{R} \equiv\left(0,-\frac{1}{2}\right)\)

    \(\mathrm{PQ}=2 \sqrt{3}=\) length of latus rectum.

    \(\Rightarrow\) Two parabolas are possible whose vertices are \(\left(0,-\frac{\sqrt{3}}{2}-\frac{1}{2}\right)\) and \(\left(0, \frac{\sqrt{3}}{2}-\frac{1}{2}\right)\)

    Hence, the equations of the parabolas are \(x^{2}-2 \sqrt{3} y=3+\sqrt{3}\) and \(x^{2}+2 \sqrt{3} y=3-\sqrt{3}\)

    Hence options B is the correct answer.

  • Question 3
    3 / -1

    Let \(a, b, c\) are the Arithmetic means between two numbers such that \(a+b+c=15\) and \(p, q, r\) be Harmonic mean between same numbers such that \(\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=\frac{5}{3}\) then the numbers are

    Solution

    Let numbers be \(x, y\) \(3\left(\frac{x+y}{2}\right)=a+b+c=15\)

    \(x+y=10\)

    \(\frac{3}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=\left(\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\right)=\frac{5}{3}\)

    \(\frac{1}{x}+\frac{1}{y}=\frac{10}{9}\)

    \(x=9, y=1\)

    Hence, The correct answer is C.

  • Question 4
    3 / -1

    The number of values of \(\lambda\) for which the given system of equations has No solution

    \(x+2 y+3 z=5\)

    \(4 x+6 y+2 \lambda z=21\)

    \(x+\lambda y+3 z=3\)

    Solution

    When \(\Delta=\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 6 & 2 \lambda \\ 1 & \lambda & 3\end{array}\right|=0\)

    there can be two possibilities

    (i) No solution

    (ii) Infinite solution

    But for Infinite solution

    \(\Delta 1\) is the determinant obtained by replacing the third column of \(\Delta\) by the elements of the constant matrix.

    \(\Delta_{1}=\left|\begin{array}{lll}1 & 2 & 5 \\ 4 & 6 & 21 \\ 1 & \lambda & 3\end{array}\right|\)

    Should also be zero

    So, for no solution condition will be,

    \(\Delta=0 \quad\) and \(\quad \Delta_{1} \neq 0\)

    \(\Delta=0 \Rightarrow\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 6 & 2 \lambda \\ 1 & 2 & 3\end{array}\right|=0\)

    \(\Rightarrow 1\left(18-2 \lambda^{2}\right)-2(12-2 \lambda)+3(4 \lambda-6)=0\)

    \(\Rightarrow \quad \lambda^{2}-8 \lambda+12=0\)

    \(\lambda=2,6\)

    \(\Delta_{1}=0 \Rightarrow\left|\begin{array}{lll}1 & 2 & 5 \\ 4 & 6 & 21 \\ 1 & 2 & 3\end{array}\right|=0\)

    \(\Rightarrow 1(18-21 \lambda)-2(12-21)+5(4 \lambda-6)=0\)

    \(\Rightarrow \quad-\lambda,+6=0\)

    \(2=6\)

    So, \(\lambda\) can have only one value

    Hence, The correct answer is C.

  • Question 5
    3 / -1

    In a triangle ΔPQR, cos(P - R) cos(Q) + cos(2Q) = 0

    Which of the following options is/are correct?

    Solution

    Consider the expression. \(\cos (\boldsymbol{P}-\boldsymbol{R}) \cos (Q)+\cos (2 Q)=0\)

    \(\cos (P-R) \cos \left\lceil 180^{\circ}-(P+R)\right\rceil+1-2 \sin ^{2} Q=0\)

    \(-\cos (P-R) \cos (P+R)+1-2 \sin ^{2} Q=0\)

    \(-\cos ^{2} P+\sin ^{2} R+1-2 \sin ^{2} Q=0\)

    \(-\left(1-\sin ^{2} P\right)+\sin ^{2} R+1-2 \sin ^{2} Q=0\)

    \(\sin ^{2} P+\sin ^{2} R=2 \sin ^{2} Q\)

    We know that

    \(\frac{\sin P}{p}=\frac{\sin Q}{q}=\frac{\sin R}{r}=k\)

    Therefore \(\sin P=p k, \sin Q=q k, \sin R=r k\)

    \(p^{2} k^{2}+r^{2} k^{2}=2 q^{2} k^{2}\)

    \(p^{2}+r^{2}=2 q^{2}\)

    Therefore

    \(p^{2}, q^{2}, r^{2}\) are in \(\mathrm{AP}\)

    Hence options A is the correct answer.

  • Question 6
    3 / -1

    If \(p \rightarrow(p \wedge \sim q)\)

    is false, then truth value of \(p\) and \(q\) are respectively

    Solution

    Truth table:

    So, when \(p \rightarrow(p \wedge \sim q)\)

    is false, \(\mathrm{p}\) and \(\mathrm{q}\) both are true 'T

    Hence, The correct answer is B.

  • Question 7
    3 / -1

    If \((\mathrm{n}+1) !=12 \times(\mathrm{n}-1) !\), then the value of \(\mathrm{n}\) is?

    Solution

    We have:

    \((n+1) !=12 \times(n-1) !\)

    \(\Rightarrow(n+1) \times n \times(n-1) !=12 \times(n-1) !\)

    \(\Rightarrow({n}+1) \times {n}=12\)

    \(\Rightarrow {n}^{2}+{n}-12=0\)

    \(\Rightarrow {n}^{2}+4 {n}-3 {n}-12=0\)

    \(\Rightarrow n(n+4)-3(n+4)=0\)

    \(\Rightarrow(n+4)(n-3)=0\)

    \(\Rightarrow {n}=-4,3\)

    Since, \(n\) has to be a natural number, \(n=3\)

  • Question 8
    3 / -1

    Find the equation of ellipse whose eccentricity is \(\frac{1}{2}\), length of latus rectum is 4 and the center is \((0,0)\).

    Solution

    Given eccentricity \((\mathrm{e})=\frac{1}{2}\)

    \( \frac{\sqrt{a^{2}-b^{2}}}{a}=\frac{1}{2}\)[\(\because\)Eccentricity \(=\frac{\sqrt{\left({a}^{2}-\mathrm{b}^{2}\right)}}{{a}}\)]

    \(\Rightarrow {a}^{2}-\mathrm{b}^{2}=\frac{{a}^{2}}{4}\)

    \(\Rightarrow \mathrm{b}^{2}=\frac{3 a^{2}}{4}\)...(i)

    Also Latus rectum length \(=4\)

    \( \frac{2 \mathrm{~b}^{2}}{{a}}=4\) [\(\because\) Length of latus rectum \(=\frac{2 b^{2}}{a}\)]

    \(\Rightarrow \mathrm{b}^{2}=\mathrm{2 a}\)...(ii)

    Comparing (i) and (ii)

    \( \frac{3 {a}^{2}}{4}=2 {a}\)

    \(\Rightarrow {a}=\frac{8}{3}\)

    So,

    \(\mathrm{b}^{2}=2 {a}=\frac{16}{3}\)

    And

    \({a}^{2}=\frac{64}{9}\)

    The equation of ellipse

    \(\frac{\mathrm{x}^{2}}{{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1\)

    \(\Rightarrow 9 \mathrm{x}^{2}+12 \mathrm{y}^{2}=64\)

  • Question 9
    3 / -1

    If the mean and standard deviation of 10 observations are 20 and 2 respectively. The sum of squares of all the observations is—

    Solution

    \(\operatorname{Mean} x=\frac{\sum_{i=1}^{n} x_{i}}{n}\)

    \(\Rightarrow 20=\frac{\sum_{i=1}^{10} x_{1}}{10}\)

    \(\Rightarrow \sum_{i=1}^{10} x_{i}=200\)

    \((S \text { tandard deviation })^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}{n}-(x)^{2}\)

    \(\Rightarrow(2)^{2}+400=\frac{1}{10}\left[\sum_{i=1}^{10}\left(x_{i}\right)^{2}\right]\)

    \(\Rightarrow 4040=\sum_{i=1}^{10} x_{i}^{2}\)

    \(\Rightarrow \sum_{i=1}^{10} x_{i}^{2}=4040\)

    Hence, The correct answer is C.

  • Question 10
    3 / -1

    The internal bisector of ∠A of a triangle ABC meets side BC at D. A line drawn through D perpendicular to AD intersects the side AC at E and side AB at F. If a, b and c represent the sides of ΔABC, then-

    Solution

    Given, internal angle bisector of A meets BC at D. we know length of AD is given by, \(A D=\frac{2 b c}{b+c} \cos \frac{A}{2}\) Given,

    \(\triangle\) ADE is right angled triangle with right angle at \(D\).

    \(\angle D=90^{\circ}, \quad \angle A E D=90-\frac{A}{2}\)

    Using sine rule in \(\triangle\) ADE, we get

    \(\frac{A D}{\sin \angle A E D}=\frac{A E}{\sin \angle A D E}=\frac{D E}{\sin \angle \frac{A}{2}}\)

    \(\frac{A D}{\cos \frac{A}{2}}=A E=\frac{D E}{\sin \frac{A}{2}}\)

    Substitute the value of AD in above equation, we get

    \(A E=\frac{\frac{2 k}{b+c} \cos \frac{A}{2}}{\cos \frac{A}{2}}=\frac{2 b c}{b+c}\)

    \(\mathrm{SO}, \mathrm{AE}\) is harmonic mean of \(\mathrm{b}\) and \(\mathrm{c}\). Consider \(\triangle\) ADE and \(\triangle\) ADF \(,\) we know that \(\angle A D E=\angle A D F=90^{\circ}\)

    \(\angle D A E=\angle D A F=\angle \frac{A}{2}\)

    \(\therefore \angle A E D=\angle A F D=90-\angle \frac{A}{2}\)

    Hence \(\triangle\) AEF is isosceles triangle.

    \(E F=2 D E=2 A E \sin \frac{A}{2}\)

    \(E F=2 \times \frac{2 b c}{b+c} \sin \frac{A}{2}=\frac{4 b c}{b+c} \sin \frac{A}{2}\)

    Hence options D is the correct answer.

  • Question 11
    3 / -1

    Find the equation(s) of common tangent(s) to y = x2 and y = - x2 + 4x - 4.

    Solution

    The equation of tangent to \(y=x^{2}\)

    \(y=m x-\frac{m^{2}}{4}\)

    Putting in \(y=-x^{2}+4 x-4\)

    \(m x-\frac{m^{2}}{4}=-x^{2}+4 x-4\)

    \(\Rightarrow x^{2}+x(m-4)+4-\frac{m^{2}}{4}=0\)

    \(D=0\)

    Now, \((m-4)^{2}-\left(16-m^{2}\right)=0\)

    \(\Rightarrow 2 m(m-4)=0\)

    \(\Rightarrow \mathbf{m}=0,4\)

    \(y=0\) and \(y=4(x-1)\) are the required tangents. Correct answers: \(y=4(x-1), y=0\)

    Hence option A is the correct answer.

  • Question 12
    3 / -1

    The value of \({ }^{21} \mathrm{C}_{1}+{ }^{21} \mathrm{C}_{2}+\ldots .21 \mathrm{C}_{10}\) is \(-\)

    Solution

    \({ }^{21} \mathrm{C}_{1}+{ }^{21} \mathrm{C}_{2}+{ }^{21} \mathrm{C}_{3}+\ldots .^{21} \mathrm{C}_{10}\)

    \(=\frac{1}{2}\left\{2\left({ }^{21} \mathrm{C}_{1}+{ }^{21} \mathrm{C}_{2}+{ }^{21} \mathrm{C}_{3}+\ldots+{ }^{21} \mathrm{C}_{10}\right)\right\}\)

    Now,

    \({ }^{21} \mathrm{c}_{1}={ }^{21} \mathrm{C}_{20}\)

    \({ }^{21} \mathrm{C}_{2}={ }^{21} \mathrm{C}_{19}\)

    \({ }^{21} C_{10}={ }^{21} C_{11}\)

    \(\mathrm{So},{ }^{21} \mathrm{C}_{1}+{ }^{21} \mathrm{C}_{2}+{ }^{21} \mathrm{C}_{3}+\ldots .^{21} \mathrm{C}_{10}\)

    \(=\frac{1}{2}\left\{{ }^{21} \mathrm{C}_{1}+{ }^{21} \mathrm{C}_{2}+\ldots{ }_{10}^{2 \mathrm{C}}+{ }^{21} \mathrm{C}_{11}+{ }^{21} \mathrm{C}_{12}+\ldots .^{21} \mathrm{c}_{20}\right\}\)

    \(=\frac{1}{2}\left\{\left(21 \mathrm{C}_{0}+{ }^{21} \mathrm{C}_{1}+{ }^{21} \mathrm{C}_{2}+\ldots . .^{21} \mathrm{C}_{20}+{ }^{2 \mathrm{c}} \mathrm{C}_{21}\right)-\left(21 \mathrm{C}_{0}+{ }^{21} \mathrm{C}_{21}\right)\right\}\)

    \(=\frac{1}{2}\left\{2^{21}-2\right\}\)

    \(\because\left({ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{2}+\ldots \ldots{ }^{n} \mathrm{C}_{n-1}+{ }^{n} \mathrm{C}_{n}=2^{n}\right)\)

    \(=2^{20}-1\)

    Hence, The correct answer is D.

  • Question 13
    3 / -1

    The angles of elevation of top of a pole from two points \(A\) and \(B\) on the horizontal line lying on opposite side of the pole are observed to be \(30^{\circ}\) and \(60^{\circ}\) If \(A B=100 \mathrm{m}\) then height of the pole is

    Solution

    Let the height of pole be \(P Q=h\) m. And \(Q B=d\) be the distance between \(B\) and foot of pole. \(\tan 60^{\circ}=\frac{h}{d}\)

    \(\Rightarrow d=\frac{h}{\sqrt{3}}\)

    \(\tan 30^{\circ}=\frac{h}{100-d}\)

    \(\Rightarrow-\frac{h}{\sqrt{3}}+100=\sqrt{3} h\)

    \(\Rightarrow 100=h\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right)\)

    \(\Rightarrow h=25 \sqrt{3} \mathrm{m}\)

    Hence, The correct answer is D.

  • Question 14
    3 / -1

    \(\int \frac{x^{2}-1}{\left(x^{2}+1\right)\left(x^{4}+1\right)^{1 / 2}} d x\)

    Solution

    \(I=\int \frac{x^{2}-1}{\left(x^{2}+1\right)\left(x^{4}+1\right)^{1 / 2}} d x\)

    \(I=\int \frac{1-1 / x^{2}}{\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}\right)^{1 / 2}} d x\)

    \(I=\int \frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right) \sqrt{\left(x+\frac{1}{x}\right)^{2}-2}} d x\)

    Let \(x+\frac{1}{x}=t\)

    \(\quad=d\left(x+\frac{1}{x}\right)=d t\)

    \(\quad=\left(1-\frac{1}{x^{2}}\right) d x=d t\)

    \(I=\int \frac{d t}{t \sqrt{t^{2}-2}}=\int \frac{d t}{t \sqrt{t^{2}-(\sqrt{2})^{2}}}\)

    \(=\frac{1}{\sqrt{2}} \sec ^{-1}\left(\frac{t}{\sqrt{2}}\right)\left\{\because \int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{2} \sec ^{-1} \frac{x}{2}\right)\)

    \(=\frac{1}{\sqrt{2}} \sec ^{-1}\left(\frac{x+\frac{1}{x}}{\sqrt{2}}\right)\)

    Hence, The correct answer is A.

  • Question 15
    3 / -1

    Find the number of four digit numbers that are less than 2000 that can be formed with the digits 1,2,3,4 such that each digit can be repeated any number of times

    Solution

    Given that the numbers should be less than 2000 , so the first digit can only be filled by 1 The other three digits can take any of the four given values in 4 ways each

    \(\therefore\) Required number of 4 -digit numbers \(=1 \times 4^{3}=64\)

    Hence, The correct answer is C.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now