Let equation of the line through \(P(3,8,2)\) and parallel to the plane \(3 x+2 y-2 z+15=0\) be \(\frac{x-3}{A}=\frac{y-8}{B}=\frac{z-2}{C}\)
Then, \(3 A+2 B-2 C=0\)
Let line
(i) intersect
\(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}\) at \(Q\)
then \(\left|\begin{array}{ccc}x_{1}-x_{2} & y_{1}-y_{2} & z_{1}-z_{2} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0\)
\(\Rightarrow\left|\begin{array}{ccc}3-1 & 8-3 & 2-2 \\ A & B & C \\ 2 & 4 & 3\end{array}\right|=0\)
\(\Rightarrow 15 A-6 B-2 C=0\)
From equation (ii) and equation \(\frac{A}{\left|\begin{array}{cc}2 & -2 \\ -6 & -2\end{array}\right|}=\frac{B}{\left|\begin{array}{cc}-2 & 3 \\ -2 & 15\end{array}\right|}=\frac{C}{\left|\begin{array}{cc}3 & 2 \\ 15 & -6\end{array}\right|}\)
\(\Rightarrow \frac{A}{2}=\frac{B}{3}=\frac{C}{6}\)
Substituting \(A, B\) and \(C\) in equation
\(\frac{x-3}{2}=\frac{y-8}{3}=\frac{z-2}{6}\)
This is the equation of line \(P Q\) parallel to the plane \(3 x+2 y-2 z+15=0\)
Now, 'Q' is the point where this line cuts the line \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}\)
So, point 'Q' will satisfy this line also.
Any point 'Q' on line \(\frac{x-3}{2}=\frac{y-8}{3}=\frac{z-2}{6}=\lambda\)
is \(Q(2 \lambda+3,3 \lambda+8,6 \lambda+2)\)
When this point also lies on
\(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}\)
\(\Rightarrow \frac{(2 \lambda+3)-1}{2}=\frac{3 \lambda+8-3}{4}=\frac{6 \lambda+2-2}{3}\)
\(\Rightarrow \lambda=1\)
Point \(Q=(5,11,8)\)
length of \(P Q=\sqrt{(5-3)^{2}+(11-8)^{2}+(8-2)^{2}}\)
\(=\sqrt{4+9+36}\)
\(=7\) unit
Hence option D is the correct answer.